

Vision Sensors, Smart Cameras, 3D Cameras, Vision Accessories

Vision Sensors

The Vision Sensors of SICK are easy to use, rugged and reliable. They are designed to do application-specific tasks where a standard sensor would not work. SICK provides Vision Sensors from part presence and identification to colour sorting and recognition. The SICK Vision Sensors are easy to set up and manage. With a teachin and initial configuration, the devices are ready for immediate operation in the production line.

3D Cameras

Ranger and Ruler cameras measure 3D features at unmatched speed, producing a series of profiles of the measured object. Providing a 3rd dimension adds height and shape measurement data, which can be critical when correctly classifying an object. The Ranger and Ruler cameras are key components in many marketleading in-line inspection machines for 3D vision. The generated 3D data is distributed over standard interfaces, such as CameraLink and Gigabit Ethernet, to a PC for analysis.

Smart Cameras

The IVC-2D and IVC-3D are robust Smart Cameras working with 2D images and 3D images or 3D profiles, respectively. The cameras operate stand-alone or as part of the factory network. The application development is done in the flexible and straight-forward PC application development tool IVC Studio, which is common for both products. The inspection results can be sent directly to the PLC or handling equipment and also monitored via Ethernet.

Vision Accessories

- We provide a wide range of accessories to enable us to provide complete solutions. Illumination, photoelectric sensors for triggering, I/O modules etc. are easily connected by standard industrial cabling from SICK.
- Robust IP 65 or IP 67 rated lighting modules
- Industrial powered by standard 24 V DC
- High intensity for fast inspection speed
- Easy trigger connection to the vision systems

Contents

Machine Vision	
Vision	
Introduction page	page 1320
Vision Sensors	
ICS	page 1322
AGD/DCI	page 1330
CVS	page 1334
Smart Cameras	
IVC-2D	page 1348
IVC-3D	page 1352
3D Cameras	
Ranger C	page 1356
MultiScan on Ranger C	page 1358
Ruler E	page 1362
Vision Accessories	
ICL	page 1366
ILP	page 1372

Machine Vision →

What is Machine Vision?

Vision Introduction

Machine Vision replaces or complements manual inspection and measurement tasks using the latest digital imaging technology.

What our cameras will do for you:

Measure

- Length, Width, Height
- Area, Volume, Size
- Number of objects

Locate

- Presence
- Position [x,y], [x,y,z]

Inspect

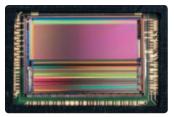
- Correct assembly
- Shape

Identify

- Symbols
- Patterns

Machine Vision solutions by SICK IVP save money by:

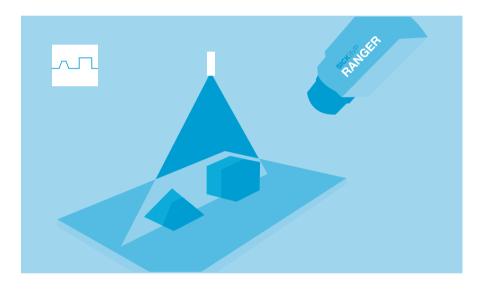
- Improving product quality
- Improving production yield
- Reducing cost of manual inspection
- Using one camera instead of complex sensor arrangements
- Increasing customer satisfaction


 Our machine vision cameras identify defective products before they reach your customer

Introduction

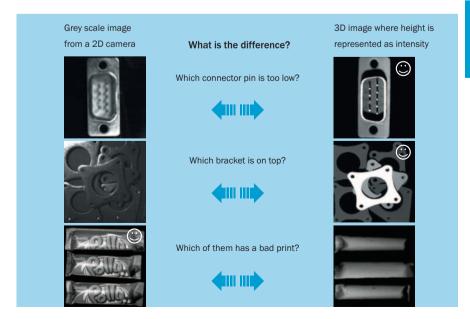
Top Performance

The unsurpassed speed and performance is a result of SICK IVP's patented CMOS sensor technology. The powerful image processor integrated on the sensor chip allows for extremely fast image processing.



Industrial Robustness

Our Vision Cameras are built for industrial environment. Every detail, from camera housings to cable connectors, are carefully designed with SICK's long time experience of industrial sensors for factory automation.


Getting the Third Dimension

Our 3D products are based on laser line triangulation, a very robust way of gathering height information.

2D & 3D Cameras

Some applications are best solved by 3D and some by 2D. Of course we offer both types to give you the optimal solution!

SICK

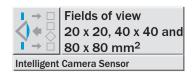
Intelligent Camera Sensor ICS: Teach-in, Detecting, Switching

The ICS intelligent camera sensor integrates many functions and components into a single device and thus saves expenditure and space. Its compact housing contains all the components of a complete image processing system such as optics, object lighting, evaluation hardware and software.

Four pre-programmed evaluation tools make the ICS especially flexible. With pixel sum comparison, minimum pixel sum, area comparison and shape comparison, it has the basic features for virtually any application. Its Advanced Series even detects rotated contours and thus lends itself to difficult tasks. The cycle times are short throughout, making it suitable for machines with high cycle rates, assisted by simultaneous detection of up to four objects and the corresponding switching of four outputs.

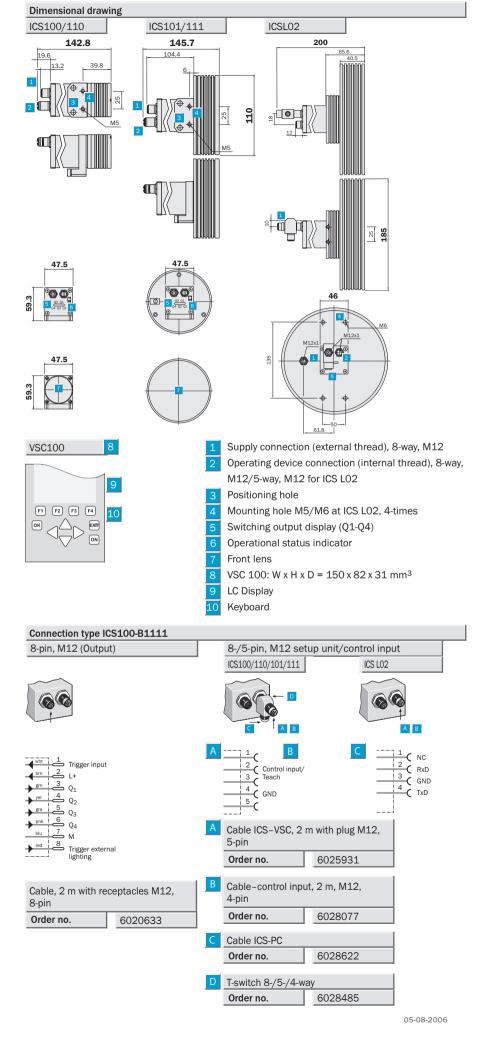
Despite the variety of functions, parametrisation and set-up remains simple and secure. Teachin is performed by the separate VSC operating device. During commissioning this displays all the parameters and also a grey scale image which makes alignment and adjustment very comfortable and secure. Parameter sets are easily read out via a serial interface and can be transferred to another or the same ICS - a convincing argument for flexibility during product format changes.

The internal memory of the ICS stores not only one, but twelve fully parameterised tasks and allows them to be called by a simple PLC signal. Ideal for systems with regular and fast product changes without extensive PC links. ► The ICS monitors whether the serial number has been fully printed on the packaging.



 Specialist for position and shape: the ICS checks the orientation of bottle tops in an automatic bottling plant.

► Is a gear tooth missing or was the surface incorrectly treated? The ICS already meets the requirements of different testing processes.


Intelligent Camera Sensor ICS100, 110, 101, 111, L02 with coaxial ring light

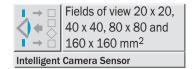
- Suitable for very fast operations
- Parameter transmission from/to PC or PLC
- Teach data selectable via PLC
- Flexible use through:
 - different evaluation methods
 - robust, durable industrial design
- Secure settings due to LC image display

CE

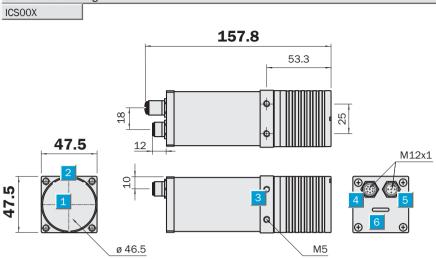
ICS100, 110, 101, 111, L02

Technical data		ICS100 -B1211		ICS101 -B1211			VSC100				
	70	DIZII	-01211			-01111					
Nominal scanning distance/	70 mm/20 x 20 mm ²					1					
Field of view	140 mm/40 x 40 mm ²						1				
	330 mm/80 x 80 mm ²			1	1						
Flash time for LED lighting ¹)	Adjustable, 50 µs to 1300 µs										
Exposure time for ext. lighting ²)	8 ms 23 ms										
Colour of light/Filters	Green (Filter: 450 550 nm)										
Image sensor	CMOS; 512 x 512 pixels										
Test modes	1 4 (Explanation see below)			_		_					
	1 5 (Explanation see below)										
Copying/Changing ³⁾	Mechanical, optical, parameters										
Supply voltage V _S ⁴⁾	24 V DC										
Residual ripple ⁵)	< 5 V _{PP}										
Current consumption 6)	< 450 mA				1	1					
	< 600 mA										
	< 1.2 A			((
Switching outputs	4 x B (NPN/PNP)										
Output currents I _A max. ⁷⁾	< 100 mA										
Response time/cycle time 8)	≥ 2.5 ms										
Max. image frequency	400/s										
Trigger input ⁹⁾	HIGH corresp. ≥ 10 V 28.8 V										
Trigger output for ext. light.	TTL; LOW = active										
Serial interface ¹⁰⁾	RS 232										
$I/O + V_s$ connection	M12, 8-pin										
VSC – ICS connection	M12, 8-pin ¹¹⁾										
	M12, 5-pin										
Teach field, Search field	Adjustable size and position										
Ambient temperature T _A	Operation: 0 °C +50 °C										
	Storage: -25 °C +75 °C										
	Storage: -20 °C +60 °C										
Shock load	15 g, 6 directions										
Enclosure rating	IP 64										
Weight	240 g										
	350 g										
	780 g										
	2,200 g										
¹⁾ Average service life 50,000 h at $T_A = +25$ °C ²⁾ In flash mode = pulse duration	 ³⁾ Mechanical: with adapter plate; optical: calibration tube Parameters: via PLC/PC download ⁴⁾ Limit values ±20 % 	6) Witho 7) Amou	nces ut load	l or fall sh r all four c bad	0		¹⁰⁾ Param ¹¹⁾ Conne	ise time ≥ eter transr	1.3 ms nission a g T-switch	and data n M12, 8-	output
Check Mode	Procedure ¹²⁾										
1. Pixel sum	Checking the number of pixels for e	ceeding or	falling b	elow the	e limit va	alues					
2. Minimum pixel sum	Checking pixel number exceeding a	limit									
3. Multi-area evaluation	Connected surfaces are compared i	Connected surfaces are compared in respect of number and area									

5. Rotational contour check	Taught-in contours (=limit pixels between black and white) are searched for in the image to be checked – even if these are tilted or displaced
4. Shape check	All pixels in the teach-in field should appear identically arranged (no tilt) in any position in the search field
3. Multi-area evaluation	Connected surfaces are compared in respect of humber and area


12) All procedures are used in the binary image. A comparison is made each time between the taught-in reference image and the image to be checked.

Order information


Intelligent Camer	a Sensor	Mounting technology				
Туре	Order no.	Туре	Order no.			
ICS100-B1211	1026253	Bracket mounting (set) ICS100/110	2027839			
ICS110-B1211	1026255	Universal rod mount clamp ICS100/110	2022464			
ICS101-B1211	1026254	Fixing plate ¹³⁾ ICS100/110/101/111	2029533			
ICS111-B1211	1026256	Rod mounting, ICS101/111	2029925			
ICS L02-B1111	1025547	Calibration tube for field of view 20 mm x 20 mm	2030744			
VSC 100	2025857	Calibration tube for field of view 40 mm x 40 mm	2030808			

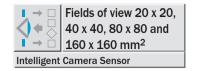
¹³⁾ Enables dismantling without loss of alignment.

Intelligent Camera Sensor ICS000, 001, 002, 003, 009

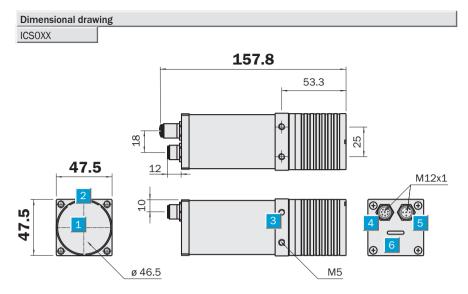
- Suitable for fast operations
- Flexibly used with external lighting
- Easy product format change through memory selection via PLC
- Secure settings due to LC image display
- Robust design

1	Lens/"C" mounting thread
2	Hood
3	Fixing hole M5, 4-times
4	Output, 8-pin, M12
5	Setup unit connection, 5-pin, M12
6	Display of output switching state
7	LC Display
8	Keyboard
9	VSC100: $WxHxD = 150 \times 82 \times 31 \text{ mm}^3$
_	

Connection type					
ICS00X	8-pin, M12 (Outpu	t)	5-pin. M12 setup	unit/control input	
	$\begin{array}{c c} brn & 2 \\ \hline grn & 3 \\ \hline grn & 3 \\ \hline grn & 4 \\ \hline gra & 5 \\ \hline gra & 5 \\ \hline gra & 6 \\ \hline gra & 6 \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline gra & 7 \\ \hline quad a \\ \hline$	L 2 3	1 C 2 C Cor 3 C 4 C GN	ntrol input D	
		igger external	Cable, 2 m with plug M12, 5-pin		
	lig	hting	Order no.	6025931	
	Cable, 2 m with red 8-pin	ceptacles M12,	Cable-control input 4-pin	t, 2 m, M12,	
	Order no.	6020633	Order no.	6028077	


ICS000, 001, 002, 003, 009

Technical data		ICS000 ICS001 ICS001 ICS002 ICS002 ICS003 ICS009 VSC -B2111 -B1111 -B2111 -B2111 -B2111 -B0111 100
Nominal scanning distance/	70 mm/20 x 20 mm ²	
Field of view	140 mm/40 x 40 mm ²	
	330 mm/80 x 80 mm ²	
	650 mm/160 x 160 mm ²	
	Provided by customer	
-	Lens with green filter (450 550 nm)	
	Lens with red filter (610 690 nm)	
	Without lens ("C" mounting thread)	
made concor	CMOS; 512 x 512 pixels	
mage sensor Supply voltage V _S ¹⁾	24 V DC	
Residual ripple ²⁾		
Power consumption ³⁾	< 5 V _{PP} < 350 mA	
Switched outputs	4 x B (NPN/PNP)	
Dutput currents I _A max. ⁴⁾		
· ^	< 100 mA	
Response time/cycle time 5)	≥ 2.5 ms	
Switching frequency max.	400/s	
Frigger output for ext. light. ⁶⁾	TTL; low = active	
Frigger input ⁷⁾	Falling edge;	
(0 ·) / · · ·	High corresp. ≥ 10 V 28.8 V	
/0 + V _S connection	M12, 8-pin, plug on ICS side	
Programming unit connection ⁸⁾	M12, 5-pin, receptacle	
Software features	4 evaluation methods (see below)	
each field, search field	Adjustable size and position	
Autoform teach field ⁹⁾	Object selectable by arrow	
Number of teach fields (test programs		
Ambient temperature	Operation: 0 °C +50 °C	
	Storage: -20 °C +60 °C	
	Storage: -25 °C +70 °C	
Shock load	15 g, 6 directions	
Inclosure rating	IP 64	
	IP 40	
Veight	Approx. 350 g	
	Approx. 240 g	
lousing material	Aluminium and brass	
 Limit values ± 20 % May not exceed or fall short of V_S tolerances Without load Total amount for all four outputs 	 ⁵⁾ Signal run-time with resistive load ⁶⁾ Flash length adjustable between 50 µs and 1.3 ms ⁷⁾ Trigger pulse ≥ 2.5 ms 	 ⁸⁾ Cable length 2 m, PVC, Ø 5 mm, do not distort cable below 0 °C ⁹⁾ Contour of teach field = contour of object selected
Test mode	Process ¹⁰	Typical applications
Shape check (pattern matching)	The patterns taught are sought in the image being checked, even when shifted	Shape, position and dimension check, object detection, presence monitoring, completeness
Aulti-area evaluation	Pixels are compared with respect to number and area	Presence monitoring, completeness check
Minimum pixel sum	Checking pixel number exceeding a limit	Presence monitoring, e.g. for transparent objects with reflective surfaces, completeness monitoring, object detection with shiny surfaces ¹¹⁾
Pixel sum	Comparison of the absolute number of white and black pixels	Presence monitoring, completeness check


Order information

Intelligent Camer	a Sensor	Intelligent Camera Sensor Mounting technology		ogy	Adapter rings M30	Dx1 on "C" mount	
Туре	Order no.	Туре	Order no.	Туре	Order no.	Туре	Order no.
ICS000-B2111	1026154	ICS002-B2111	1025314	Bracket mounting (set)	2027839	With red filter	2030743
ICS001-B1111	1025310	ICS003-B2111	1025315	Uni. rod mount clamp	2022464	With green filter	2030746
ICS001-B2111	1025313	ICS009-B0111	1025312	"C" mount lens	5312900	Without filter	4039708
ICS002-B1111	1025308			1:1.3/25 mm			

Intelligent Camera Sensor ICS010, 011, 012, 013, 019

- Suitable for fast operations
- Flexibly used with external lighting
- Easy product format change through memory selection via PLC
- Secure settings due to LC image display
- Robust design

VSC100 9 F F F F F OK C F K K K K K

_	
1	Lens/"C" mount thread
2	Hood
3	Fixing hole M5, 4-times
4	Output, 8-pin, M12
5	Setup unit connection, 5-pin, M12
6	Display of output switching state
7	LC Display
8	Keyboard
9	VSC 100: $WxHxD = 150 \times 82 \times 31 \text{ mm}^3$

Connection type					
ICSOXX	8-pin, M12 (Output	t)	5-pin, M12 setup	unit/control input	
	wht 1 Tri brn 2 L+ grn 3 Q1 yel 4 Q2 gra 5 Q3 pnk 6 Q4	2	1 2 C 3 C 4 GN	ntrol input D	
			Cable, 2 m with plu 5-pin	ug M12,	
		gger external hting	Order no.	6025931	
	Cable, 2 m with rec 8-pin	ceptacles M12,	Cable-control input, 2 m, M12, 4-pin		
	Order no.	6020633	Order no.	6028077	

ICS010, 011, 012, 013, 019

Technical data		S010 ICS011 ICS011 ICS012 ICS012 I 2111 -B1111 -B2111 -B1111 -B2111 -	
Nominal scanning distance/	70 mm/20 x 20 mm ²		
Field of view	140 mm/40 x 40 mm ²		
	330 mm/80 x 80 mm ²		
	650 mm/160 x 160 mm ²		
	Provided by customer		
Filters/lens	Lens with green filter (450 550 nm)		
	Lens with red filter (610 690 nm)		
	Without lens ("C" mounting thread)		
mage sensor	CMOS; 512 x 512 pixels		
Supply voltage $U_V^{(1)}$	24 V DC		
Residual ripple ²⁾			
Current consumption ³⁾	< 5 V _{PP} < 350 mA		
Switched outputs	4 x B (NPN/PNP)		
Output currents I _A max. ⁴⁾	< 100 mA		
Response time/cycle time ⁵⁾ Switching sequence ⁶⁾	≥ 2.5 ms		
0 1	400/s		
Frigger output for ext. light. ⁷⁾	TTL; low = active		
frigger input ⁸⁾	Falling edge;		
	High corresp. ≥ 10 V 28.8 V		
$/0 + V_{\rm S}$ connection	M12, 8-pin, plug on ICS side		
Programming unit connection ⁹⁾	M12, 5-pin, receptacle		
Software features	5 evaluation methods (see below)		
each field, search field	Adjustable size and position		
Autoform teach field ¹⁰⁾	Object selectable by arrow		
Number of teach fields (test programs			
Ambient temperature	Operation: 0 °C +50 °C		
	Storage: -20 °C +60 °C		
	Storage: -25 °C +70 °C		
Shock load	15 g, 6 directions		
Enclosure rating	IP 64		
	IP 40		
Veight	Approx. 350 g		
	Approx. 240 g		
lousing material	Aluminium and brass		
 Limit values ± 20 % May not exceed or fall short of V_s 	 Signal run-time with resistive load With light/dark ratio 1:1 	Cable length 2 m, PVC, Ø 5 mm, do not distort cable below 0 °C	
tolerances	 ⁷⁾ Flash length adjustable between 50 µs 	Contour of teach field = contour of object	
 ³⁾ Without load ⁴⁾ Total amount for all four outputs 	and 1.3 ms ⁸⁾ Trigger pulse ≥ 2.5 ms	selected	
Test mode	Process 11)	pical applications	
Rotational contour check	The contours taught are sought in	ape, position and dimension	
	the image being checked, even when rotated and/or shifted	eck, object detection, presence mitoring, completeness	
Comparison of shapes	The patterns taught are sought	ape, position and dimension	
pattern matching)	in the image being checked,	eck, object detection, presence	
A. 141	even when shifted	onitoring, completeness	
Multi-area evaluation	Pixels are compared with respect to number and area	esence monitoring, npleteness check	
		• • • • • • • • • • • • • • • • • • • •	
Minimum pixel sum	Checking pixel number exceeding	esence monitoring, e.g. for trans-	
	a limit	rent objects with reflective surfaces, npleteness monitoring, object	
		tection with shiny surfaces ¹²⁾	
Pixel sum	Comparison of the absolute number	esence monitoring,	
	of white and black dots	mpleteness check	

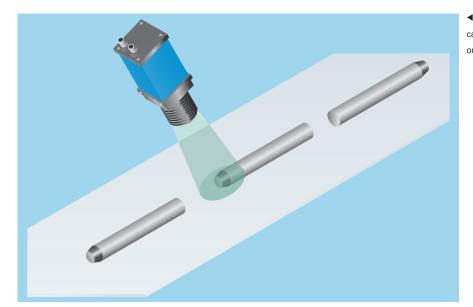
Order information

Intelligent Camera Sensor		Intelligent Camera Sensor		Mounting technolo	ogy	Adapter rings M30x1 on "C" mount				
Туре	Order no.	Туре	Order no.	Туре	Order no.	Туре	Order no.			
ICS010-B2111	On request	ICS012-B2111	On request	Bracket mounting (set)	2027839	With red filter	2030743			
ICS011-B1111	On request	ICS013-B2111	On request	Uni. rod mount clamp	2022464	With green filter	2030746			
ICS011-B2111	On request	ICS019-B0111	On request	"C" mount lens	5312900	Without filter	4039708			
ICS012-B1111	On request			1:1.3/25 mm						

SICK

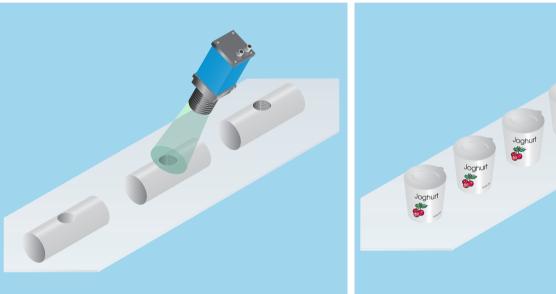
AGD and DCI: Area Gloss Detection and Date Code Inspection

The AGD and DCI camera sensors each perform one task exceptionally well, Area Gloss Detection and Date Code Inspection. Optimised to perform these tasks, the camera sensors are easy to operate using a simple teach process to set-up.

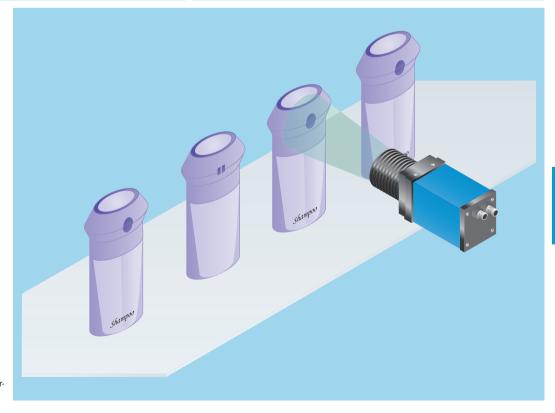

The DCl is used for simple presence checks and more demanding tasks such as on-line monitoring of printed code quality. It does this by comparing the number of dark pixels in a search field against a taught-in example and the applied tolerances. The DCl is ideal for checking the presence of codes on food packaging, bottles and pharmaceutical products.

The AGD detects surface reflections to provide valuable process information. It looks for reflections caused by the shape of a feature or a change in the surface finish from shiny or dull. This helps solve problems to detect product presence or orientation such as checking for chamfered edges and presence of grip mouldings.

Alignment of the camera sensors are easy using a keypad display and are set-up by using a two page menu. Once they have been set the sensors can be quickly changed to new products via a teach signal.


Both the AGD and DCI are very reliable in operation. The evaluation algorithms are so sturdy that rotation and shifts of objects have little influence on their operation. This is especially important for ensuring a high degree of system reliability and problem-free operation at clock rates of more than 200 images per second.

The AGD detects chamfered edges which can be used to check the position and orientation of machined objects.



▼ Is the date print present and complete? The DCI easily answers this question.

bah

▲ Threads generate characteristic reflections which the AGD detects.

► Features such as grip mouldings, which reveal themselves by their reflective properties, can be used to control position.

Application-specific camera sensors AGD10/DCI10

19.6

13.2

142.8

39.8

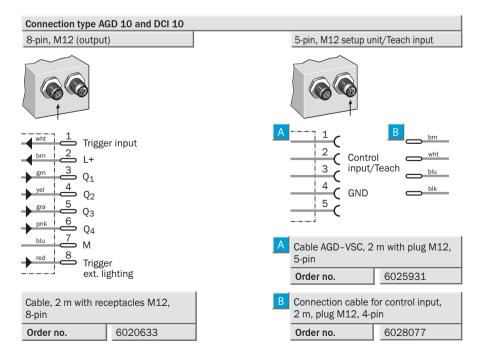
- Simple set-up and operation
- High clock cycle rate for fast processes
- Sturdy evaluation procedure
- DCI 10: warning in advance if pixel number is near the tolerance limit
- Reflections can be detected on shiny objects

CE

Dimensional drawing

47.5

AGD10


DCI10

47.5

	o o o S. C. A 4 0 0 0 4 0 0 0 5 0 0 6 0 0 7 0 7
1	Power connection (external thread), 8-pin, M12
2	Operating part connection (internal thread), 5-pin, M12
3	Fixing hole M5
4	Switch output indicator (Q1-Q4)
5	Power indicator
6	Optical axis sender, optical axis receiver
7	VSC 100: WxHxD = 150 x 82 x 31 mm ³
8	LC Display
9	Keyboard

M5

47.5

1332 SENSICK CATALOGUE

AGD10/DCI10

Technical data		AGD10 -B1111	DCI10 -B1111	VSC100					
Nominal scanning distance/	70 mm/20 x 20 mm ²					-	 	 	
Field of view									
Filters – lens	Green (filter: 450 550 nm)			1					
Light source ¹⁾	15 x LED; focused green			i				 	
Image sensor	CMOS; 512 x 512 Pixel			i				 	
Real resolution	320 x 320 Pixel			i				 	
Test mode	Pixel sum			1				 	
	Minimum pixel sum							 	
Teach field, search field	Size can be changed			1				 	
	Position can be changed			-				 	
Supply voltage V _S ²⁾	24 V DC			i					
Residual ripple ³⁾	< 5 V _{PP}	_		-				 	
Current consumption ⁴	< 450 mA	_		-					
Switched outputs	B (NPN/PNP)	_		-			 	 	
	Q1: Value in tolerance range	_							
	Q2: Value outside of tolerance	_		-			 	 	
	Q3: Value near to or below lower			-			 	 	
	tolerance limit		_	_				 	
	Q4: Value near to or above upper			1				 	
	tolerance limit		_	_				 	
Output currents I _A max. ⁵⁾	< 100 mA			1				 	
Response time/cycle time ⁶⁾	3 ms 6.4 ms							 	
Max. image frequency	Approx. 285/s								
Trigger input ⁷	HIGH corresp. ≥ 10 V 28.8 V	_		-					
	TTL: LOW = active	_							
Trigger output for ext. light.	,	_		-			 	 	
$I/O + V_S$ connection	M12, 8-pin	_			1		 	 	
VSC – AGD/DCI connection	M12, 5-pin							 	
Ambient temperature	Operation: 0 °C +50 °C						 	 	
	Storage: -25 °C +75 °C				1				
	Storage: -20 °C +60 °C		1	_					
Shock load	15 g, 6 directions								
Enclosure rating	IP 64				1				
	IP 40			_					
Weight	240 g						 	 	
	350 g			-			 	 	
Housing material	Aluminium and brass Plastic				1		 	 	
¹⁾ Average service life 50,000 h at $T_A = +25$ °C ²⁾ Limit values $\pm 20\%$ ³⁾ May not exceed or fall short of	 4) Without load 5) Total amount for all four outputs 6) Signal transit time with resistive load 7) Falling edge; pulse length ≥ 0.5 ms; reac- 				I		 	 	

d or fall short of V_S tolerances

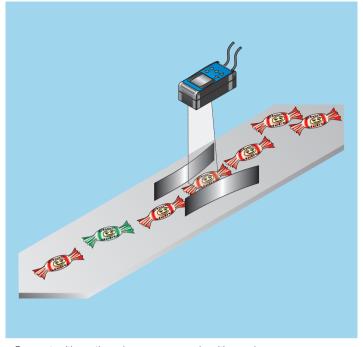
railing edge; pulse length ≥ 0.5 ms; reaction time = 3.5 ms

Test mode	Process ⁸⁾
Pixel sum	Check of the number of pixels at exceeding or falling below the limit values
Minimum pixel sum	Checking pixel number exceeding a limit

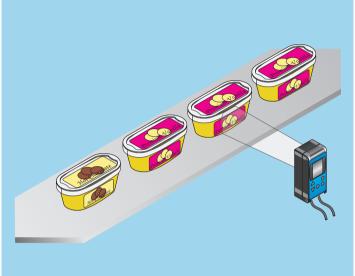
⁸⁾ All procedures are used in the binary image.
 A comparison is made each time between the taught-in reference image and the image to be checked.

Order information								
Intelligent Came	ra Sensor	Mounting technology						
Туре	Order no.	Туре	Order no.					
AGD10-B1111	1026384	Bracket mounting (set) ICS100/110	2027839					
DCI10-B1111	1026385	Universal rod mount clamp ICS100/110	2022464					
VSC100	2025857							

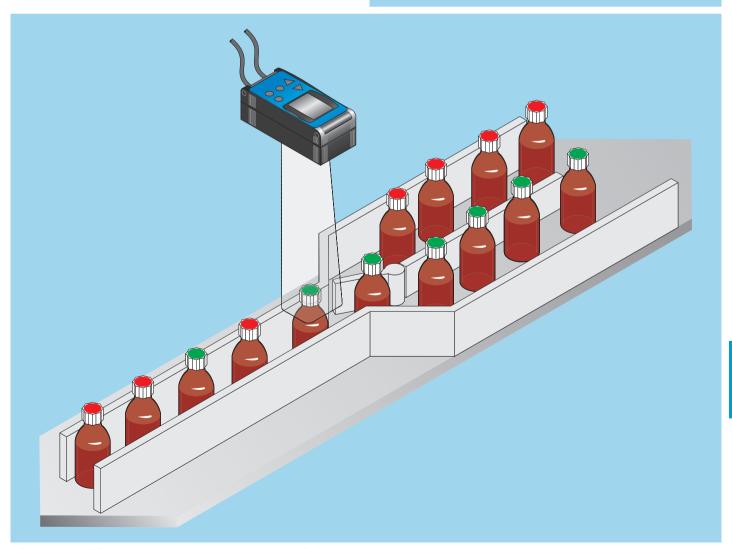
SICK


Colour Vision Sensors: Detects colours, distinguishes colours.

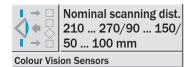
If colour plays an important role in your process and a simple colour sensor does not have the capability for more complex checks, the Colour Vision Sensors is the economic solution. They count the pixels of all colours or specifically selected colours in a monitored area and compares the result with a taught-in number.


A built-in colour display helps to optimally align the sensor for set up and teaching. The continually updated measurement values are shown so that all parameters which are needed for reliable operation are displayed. If the CVS is mounted in a way where the built-in display can't be seen, such as when embedded into a packaging machine, a separate keypad with its own colour display can be connected. This solves the problem and helps prevent any dislocating twists or sprains to the set up person.

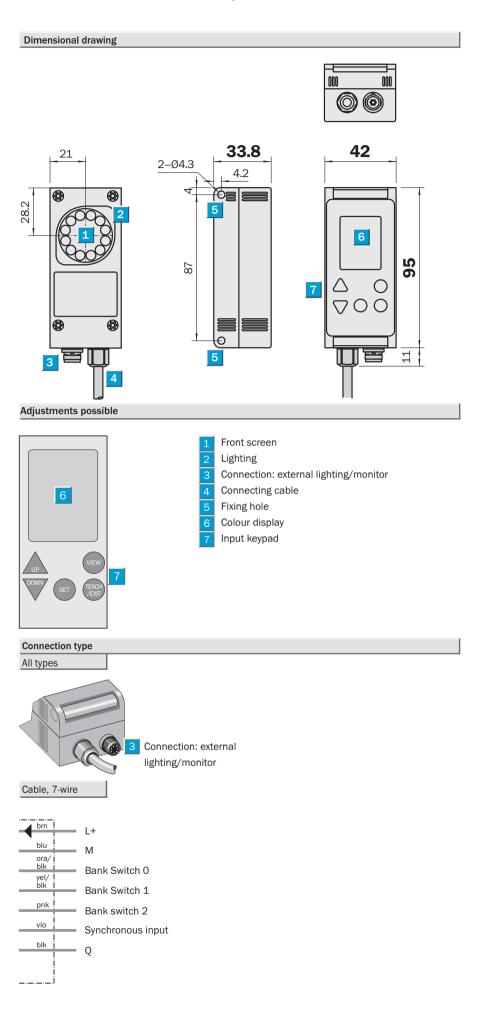
Each parameter can of course be easily edited subsequently if adjustments are required. The CVS2 has memory space for 16 complete parameter sets, which can be selected via external signals. Consequently, it can be optimally set up for fast product changes.


The CVS family has no problem in environments where broken glass must be avoided thanks to its sturdy plastic housing and front window. With its IP 67 enclosure rating it is particularly suitable for harsh industrial environment.

▼ The label is on – but is it the right one? The CVS1 Easy recognises incorrect labels by colour.



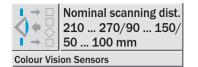
▲ Even parts with greatly varying appearance and position can be sorted by the CVS2, using their colour.


▲ The same shape, different contents: a camera sensor assists in sorting if colour remains the only distinguishing feature.

Colour Vision Sensor CVS1 Easy

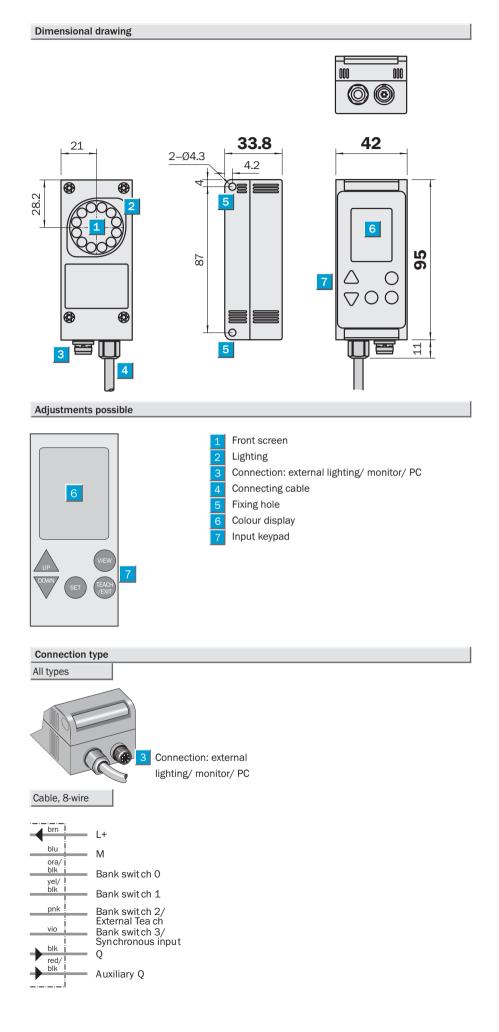
- Detecting colour
- Plug and play teach
- Memory capacity for 8 colours

Technical data


CVS1- P112 P122 P142 N112 N122 N142 Easy

Nominal scanning distance/Field of view	210 270 mm/40 x 50 55 x 65 mm ²	l l		1		
	90 150 mm/40 x 50 65 x 75 mm ²					
	50 100 mm/50 x 65 100 x 115 mm ²					
Light source ¹⁾	12 x LED, white				1	
Resolution	Max. 200 x 240 x 3 (RGB)					
Teach procedure	1-point					
	Lower limit					
Supply voltage V _s ²⁾	12 24 V DC					
Residual ripple 3)	< 5 V _{pp}					
Current consumption ⁴⁾	< 220 mA (at 24 V),					
	< 120 mA (at 12 V)					
Switching outputs	PNP					
	NPN					
Output current I _A max.	< 100 mA					
Response time ⁵⁾	0.6 22 ms					
Trigger input	HIGH corresp. 8 V					
I/O + V _S connection	Cable 7-pin, L = 2 m					
Connection of additional device	HRS, 6-pin					
Ambient temperature T _A ⁶⁾	Operation: 0 °C +40 °C					
	Storage: -20 °C +70 °C					
Shock load	5 g, 6 directions					
Housing material	ABS, acrylic, polycarbonate					
Enclosure rating	IP 67					
Weight	180 g					

Without load
 Dependent on settings; see display on device
 Rel. humidity: 35 ... 85 % at operation, 95% at storage


Teach procedure	Explanation
1-point	Colour parts of the object are taught in. Switching limit = 50% of the taught-in colour pixel sum (manually adjustable).
Lower limit	Lower switching limit of the object colour is taught in.

Order information									
Colour Vision Sens	or	Accessories							
Туре	Order no.	Туре	Order no.						
CVS1-P112 Easy	1028668	CVSM-1, external operating unit incl. monitor and keypad	1026355						
CVS1-P122 Easy	1028669	CVSL-S5, external lighting, 12 x LED, white	1026356						
CVS1-P142 Easy	1028670	Cable DSL-SH06-G03M, 3 m	6028659						
CVS1-N112 Easy	1028665								
CVS1-N122 Easy	1028666								
CVS1-N142 Easy	1028667								

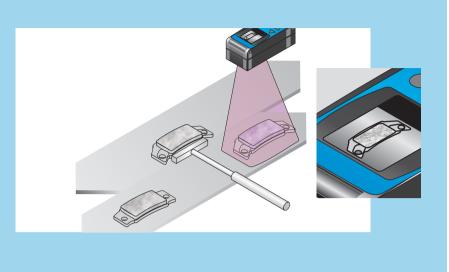
- Detecting colour
- Sorting colours
- Detecting objects using two colours
- Memory capacity for 15 colours

Technical data	CVS2-	P112	P122	P142	N112	N122	N142		
Nominal according distance /Field of view	210 270 mm/40 x 50 55 x 65 mm ²		 I					 	
Nominal scanning distance/Field of view	90 150 mm/40 x 50 65 x 75 mm ²			1				 	
	50 100 mm/50 x 65 100 x 115 mm ²								
Light source 1)	12 x LED, white								
Resolution	Max. 208 x 236 x 3 (RGB)	_							
Teach procedure	1-point								
	2-point								
	Upper/lower limit								
Supply voltage V _S ²⁾	12 24 V DC								
Residual ripple 3)	< 5 V _{pp}								
Current consumption ⁴⁾	< 240 mA (at 24 V),								
	< 140 mA (at 12 V)								
Interface	RS 232 TTL								
Switching outputs	PNP								
	NPN								
Output current I _A max.	< 100 mA								
Response time ⁵⁾	5 26.6 ms								
Trigger input	HIGH corresp. 8 V								
I/O + V _S connection	Cable 8-pin, L = 2 m								
Connection of additional device	HRS, 6-pin								
Ambient temperature T _A 6)	Operation: 0 °C +40 °C		i						
	Storage: -20 °C +70 °C								
Shock load	5 g, 6 directions								
Housing material	ABS, acrylic, polycarbonate								
Enclosure rating	IP 67								
Weight	180 g								
¹⁾ Average service life 50,000 h at $T_A = +25$ °C; 50 % intensity fall ²⁾ Limit values $\pm 10\%$	 May not exceed or fall short of V_S tolerances Without load 	on de	vice	-	see display				

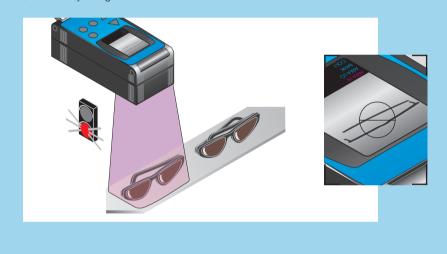
6) Rel. humidity: 35 ... 85 % at operation, 95% at storage

Teach procedure	Explanation
1-point	Colour parts of the object are taught in. Switching limit = 50% of the taught-in colour pixel sum (manually adjustable). Teach with automatic colour selection.
2-point	Colour parts of the object and the background are taught in. Switching limit = average between object and background.
Upper/lower limit	Upper and lower switching limit of the object colour are taught in.

Order information							
Colour Vision Sens	sor	Accessories					
Туре	Order no.	Туре	Order no.				
CVS2-P112	1027332	CVSM-1, external operating unit incl. monitor and keypad	1026355				
CVS2-P122	1027333	CVSL-S5, external lighting, 12 x LED, white	1026356				
CVS2-P142	1027334	Cable DSL-SH06-G03M, 3 m	6028659				
CVS2-N112	1027329	Connection cable DSL-DH06-G02M, 2 m for CVS data	6029801				
CVS2-N122	1027330	transfer and save/load configuration files to/from PC					
CVS2-N142	1027331						



Contour Vision Sensor: Detection of Shapes, Profiles and Reliefs in any Position.


Detecting and evaluating characteristic profiles — easily and flexibly. Contours, shapes and sizes are captured irrespective of position — for scanning distances up to 150 mm and fields of view up to 65 x 75 mm².

The intelligent Contour Vision Sensor CVS3 with integrated evaluation software differentiates between objects using shape or size; it detects the presence of, or damage to, printed labels and checks surfaces for contamination. ▼ The CVS3 distinguishes objects using the taught-in contour.

◄ The integrated memory can take teach-in data for up to 15 different objects; digital switching inputs permit external selection and, thus, fast and flexible product change-overs. During operation, all operational data required remains in view on the LCD display. Thus, the CVS3 combines all components of an image processing system in the smallest space.

► During setting and Teach-in, the LCD display supports the CVS3's optimum alignment. The parametrisation is done directly via the device's keypad. Automatic calculation of complex parameters and the serial interface also facilitate parametrisation; once settings are made, they can be stored on a PC and made available to other CVS3 units. ▼ Final checking of sunglasses. The CVS3 checks whether frames, lenses and ear pieces are where they belong.

▼ Does the cap fit properly? The CVS3 ensures that only correctly assembled products are packaged.

◄ With its robust and compact plastic housing and plastic front screen, the CVS3 is also particularly suitable for use in the food and beverage or pharmaceutical industries. And, thanks to IP 67 enclosure rating, it is particularly suitable for harsh industrial environments.

Contour Vision Sensor CVS3

Dimensional drawing

Object detection using shape or size

- Check for surface contamination
- Memory capacity for 15 images

000 000 \bigcirc 33.8 42 21 2–Ø4.3 4.2 đ Ø 0 fois 28.2 6 95 87 Ο \bigtriangleup 7 $\nabla O O$ 0 0 Ð 11 I 5 3 4 Adjustments possible Front screen Lighting 3 Connection: external lighting/ monitor/ PC 4 Connecting cable Fixing hole Colour display Input keypad Connection type All types Connection: external lighting/ monitor/ PC Cable, 8-wire brn L+ blu Μ ora/ blk Bank switch 0 yel/ blk Bank switch 1 pnk Bank swit ch 2/ External Tea ch vio Bank switch 3/ Synchronous input blk 0 red/ blk Auxiliary Q/ Lighting control output

Technical data	CVS3-	P122	P132	N122	N132	
Nominal scanning distance/Field of view	90 150 mm/40 x 50 65 x 75 mm ²					
	31 39 mm/15 x 18 19 x 22 mm ²					
Light source ¹⁾	12 x LED, white					
Resolution	Max. 208 x 236 x 3 (RGB)					
Supply voltage V _S ²⁾	12 24 V DC					
Current consumption ³⁾	< 140 mA (at 24 V)					
Interface	RS 232 TTL (4800 57600 Baud)					
Switching outputs	PNP					
	NPN					
Output current I _A max.	< 100 mA					
Response time (min./typ./max.) ⁴⁾	7/48/398 ms					
Switching inputs	External trigger, Teach and					
	memory selection					
$I/O + V_S$ connection	Cable 8-pin cable, L = 2 m					
Ambient temperature T _A ⁵⁾	Operation: 0 °C +40 °C					
	Storage: -20 °C +70 °C					
Shock load	5 g, 6 directions					
Housing material	ABS, acrylic, polycarbonate					
Enclosure rating	IP 67					
Weight	180 g					

Average service life 50,000 h at TA = +25 °C; 50 % drop-in intensity
 Limit values ± 10%

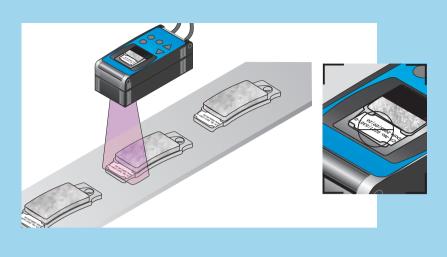
3) Without load

Dependent on settings; as displayed
 Rel. humidity: 35 ... 85 % at operation, 95% at storage

Order information

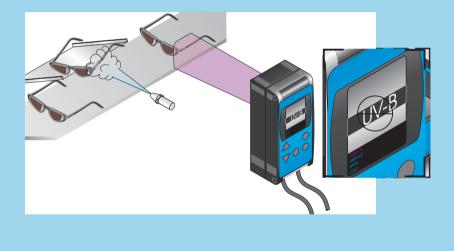
order mormation									
Contour Vision Se	nsor CVS3	Accessories							
Туре	Order no.	Туре	Order no.						
CVS3-P122	1028673	CVSM-1, external operating device incl. monitor and keypad	1026355						
CVS3-P132	1028674	CVSL-S5, external lighting, 12 x LED, white	1026356						
CVS3-N122	1028671	Connecting Cable DSL-SH06-G03M, 3 m	6028659						
CVS3-N132	1028672	Connection cable DSL-DH06-G02M, 2 m for save/load	6029801						
		configuration files to/from PC							

OCR Vision Sensor: Detection and Readout of Dates, Times, Strings and Batch Numbers.

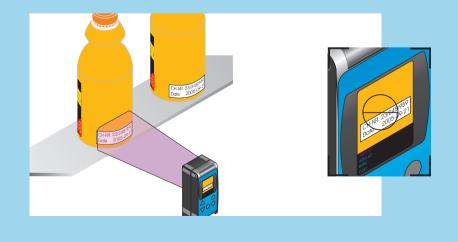

Flexible image processing in the smallest space.

For scanning distances up to 150 mm and fields of view up to 79 x 76 mm², the CVS4 detects, recognises and, if required, counts characters. The CVS4's integrated OCR evaluation software reads 60 characters on up to six lines, securely capturing up to four different formats such as two dates and times each.

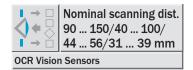
Further more the CVS4 can with advantage be used for batch code checking with its support for count-up at trigger input.


🖤 🕤 🌚

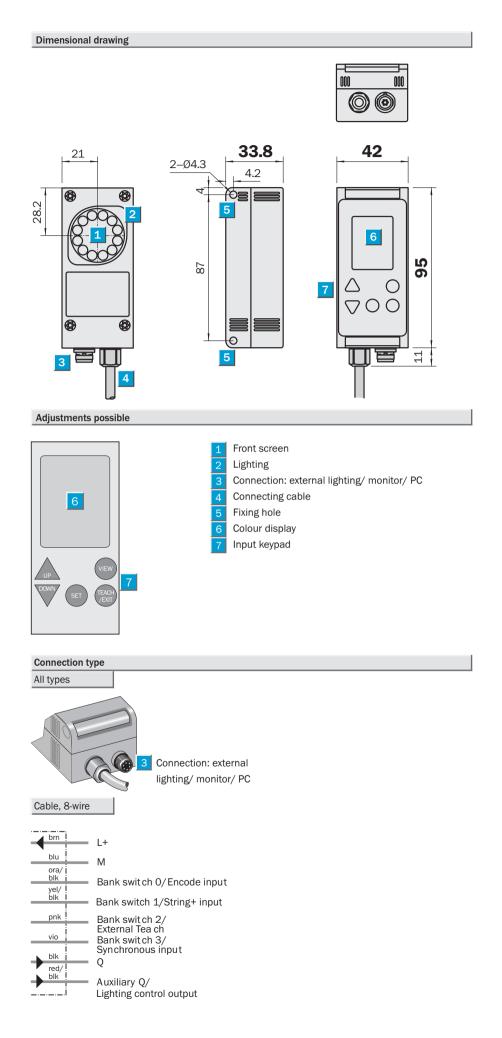
▼ Some products must be uniquely identifiable via a serial number. The CVS4 also counts the characters.



◄ Integrated character set database and clock as well as 18 predefined date and time formats allow fast setup. The character set can be extended by up to 57 user-defined characters; the internal clock ensures automatic date change at midnight. Even the recognition of consecutive or sequenced serial numbers presents the CVS4 with no challenge, thanks to the pulse counting input. The memory has a maximum capacity for 16 date/time formats, which can be selected via external signals. And up to 30 error images can be stored, for complete process control.


► During setting and Teach-in, the display supports the sensor's optimum alignment. The parameterisation is done directly via the device's keypad. Automatic calculation of complex parameters also simplifies commissioning. During operation, all operational data required remains on view via the LCD display. Thus, the CVS4 combines all components of an image processing system in the smallest space. ▼ Attention to detail is essential for similar-looking but different products: The CVS4 ensures that the label shows what is inside.

▼ The unique identification of a product is key in the food industry. The CVS4 checks if the batch number is correct and, by controlling the use-by date, ensures transparency for the customer.



◀ With its robust and compact plastic housing and plastic front screen, the CVS4 is also particularly suitable for use in the food and beverage or pharmaceutical industries. And, thanks to IP 67 enclosure rating, it is particularly suitable for harsh industrial environments.

- Detecting date, time, string or batch number
- Memory capacity of 16 teach configurations

CVS4-	N122	N132	N152	N150	N142	P122	P132	P152	P150	P142
90 150 mm/ 53 x 25 79 x 38 mm ² ;							1			
53 x 50 79 x 76 mm ²							1			
40 100 mm/ 53 x 25 115 x 53 mm ²										
44 56 mm/ 30 x 15; 30 x 30 mm ²										
										1
								-		
,										-
								<u> </u>		
								_		
,							ĺ.		1	
									i — —	
									i — —	
									1	
									i — —	
									i — —	
									i — —	
									i — —	
•										
<u> </u>										
•										
1										
	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm²	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm² 40 100 mm/ 53 x 25 115 x 53 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 44 56 mm/ 15 x 30; 30 x 30 mm² 31 39 mm/ 21 x 10; 21 x 20 mm² 2.8 30 mm/2.8 62 mm 1.0 11 mm/1.1 24 mm 0.75 8,2 mm/0.75 16 mm 2.8 44 mm/ 2.8 43 mm 12 x LED, white Max. 512 x 244 pixels (b/w) 12 24 V DC < 140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm² 40 100 mm/ 53 x 25 115 x 53 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 44 56 mm/ 15 x 30; 30 x 30 mm² 31 39 mm/ 21 x 10; 21 x 20 mm² 2.8 30 mm/2.8 62 mm 1.0 11 mm/1.1 24 mm 0.75 8,2 mm/0.75 16 mm 2.8 44 mm/ 2.8 43 mm 12 x LED, white Max. 512 x 244 pixels (b/w) 12 24 V DC < 140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm² 40 100 mm/ 53 x 25 115 x 53 mm² 44 56 mm/ 15 x 30; 30 x 30 mm² 31 39 mm/ 21 x 10; 21 x 20 mm² 2.8 30 mm/28 62 mm 1.0 11 mm/1.1 24 mm 0.75 8,2 mm/0.75 16 mm 2.8 44 mm/ 2.8 43 mm 12 x LED, white Max. 512 x 244 pixels (b/w) 12 24 V DC < 140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm² 40 100 mm/ 53 x 25 115 x 53 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 44 56 mm/ 15 x 30; 30 x 30 mm² 31 39 mm/ 21 x 10; 21 x 20 mm² 28 30 mm/2.8 62 mm 1.0 11 mm/1.1 24 mm 0.75 8,2 mm/0.75 16 mm 2.8 44 mm/ 2.8 43 mm 12 x. LED, white Max. 512 x 244 pixels (b/w) 12 24 v DC <140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 31 39 mm/ 21 x 10; 21 x 20 mm² 28 30 mm/28 62 mm 10 11 mm/11 24 mm 0.75 8,2 mm/0.75 16 mm 28 44 mm/ 2.8 43 mm 12 x LED, white Max. 512 x 244 pixels (b/w) 12 24 V DC <140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm²; 90 150 mm/ 53 x 25 115 x 53 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 31 39 mm/ 21 x 10; 21 x 20 mm² 2.8 30 mm/2.8 62 mm 10 11 mm/t1 24 mm 0.75 8,2 mm/0.75 16 mm 2.8 44 mm/ 2.8 43 mm 12 x LED, white Max 512 x 244 pixels (b/w) 12 24 V DC <140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm ² ; 53 x 50 79 x 76 mm ² 40 100 mm/ 53 x 25 115 x 53 mm ² 44 56 mm/ 30 x 15; 30 x 30 mm ² 31 39 mm/ 21 x 10; 21 x 20 mm ² 28 30 mm/ 28 62 mm 10 11 mm/1.1 24 mm 0.75 8,2 mm/ 0.75 16 mm 2.8 30 mm/ 28 62 mm 12 x LED, white Max. 512 x 244 pixels (b/w) 12 24 V DC < 140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm² 40 100 mm/ 53 x 25 115 x 53 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 41 56 mm/ 21 x 10; 21 x 20 mm² 28 30 mm/ 21 x 10; 21 x 20 mm² 28 30 mm/ 22 mm 10 11 mm/1.1 24 mm 0.75 8.2 mm/0.75 16 mm 2.8 44 mm/ 28 43 mm 12 x LED, white Max. 512 x 244 pixels (b/w) 12 x LED, white Max. 512 x 244 pixels (b/w) 12 24 V DC <140 mA (at 24 V)	90 150 mm/ 53 x 25 79 x 38 mm²; 53 x 50 79 x 76 mm² 40 100 mm/ 53 x 25 115 x 53 mm² 44 56 mm/ 30 x 15; 30 x 30 mm² 11 39 mm/ 21 x 10; 21 x 20 mm² 28 43 mm/ 21 x 10; 21 x 20 mm² 28 44 mm/ 28 43 mm 12 x LED, white Max. 512 x 244 pixels (b/w) 12 24 V DC 14 46 (x 24 V) RS 232 TTL (4800 15200 Baud) NPN PNP <

Dependent on settings; as displayed
 20-character date code in 2 lines
 For string + , teach and memory selection
 For external trigger and pulse counters

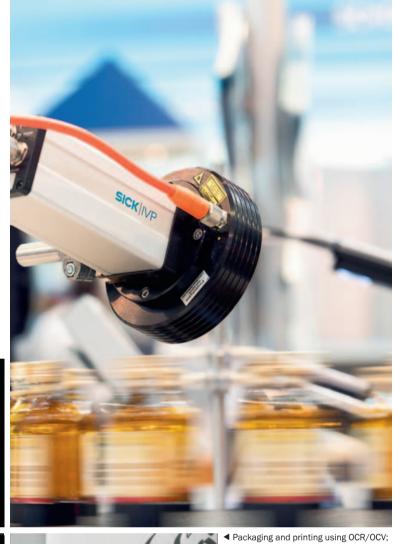
With capacitor without V_S
 With battery, without V_S
 Rel. humidity: 35 ... 85 % at operation, 95% at storage

Max. 2 date and/or time formats each, plus serial/batch number can be combined
 Can be created and transmitted by PC

Order information

OCR Vision Senso	or CVS4			Accessories	
Туре	Order no.	Туре	Order no.	Туре	Order no.
CVS4-P122	1028679	CVS4-N122	1028675	CVSM-1, external operating device incl. monitor and keypad	1026355
CVS4-P132	1028680	CVS4-N132	1028676	CVSL-S5, external lighting, 12 x LED, white	1026356
CVS4-P142	1028965	CVS4-N142	1028966	Connection cable DSL-SH06-G03M, 3 m	6028659
CVS4-P150	1028682	CVS4-N150	1028678	Connection cable DSL-DH06-G02M, 2 m for CVS data	6029801
CVS4-P152	1028681	CVS4-N152	1028677	transfer and save/load configuration files to/from PC	

IVC-2D: High Performance Smart Camera for Industrial Environment


IVC-2D is a high performance smart camera for flexible automation solutions. Rapid prototyping is ensured by the user-friendly IVC Studio software, giving the user quick and easy access to more than 100 powerful image processing tools. Once configured the camera works in stand-alone mode, without the need for a PC. Top-Performance to meet production demands of tomorrow: A powerful processor, optimized pixel processing in FPGA and advanced machine vision tools ensure that you never fail to inspect the object in time, even at the highest production speed.

Benefits with IVC-2D:

- Robust design for industrial environments
- Equipped with industrial lighting modules
- Multiple inspections in one camera
- Industrial solutions with a complete set of accessories
- Sub-pixel measurements

Examples:

- Cap position and angle measurement
- Fill level inspection
- Precision measurements and verification of tolerances
- Packaging and printing checked in one step
- Type identification by OCR, barcode and 2D code tools

► The flexible IVC-2D camera can easily inspect many features simultaneously - in this case cap position, fill level and label.

► IVC-2D can reach accuracy in the micrometer range using advanced sub-pixel measurement tools.

+ 212.4

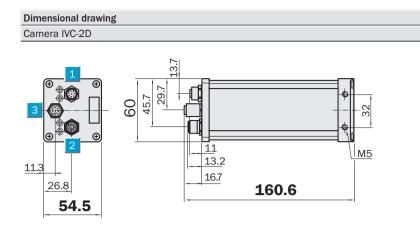
L/2 = 428.5

M = 429

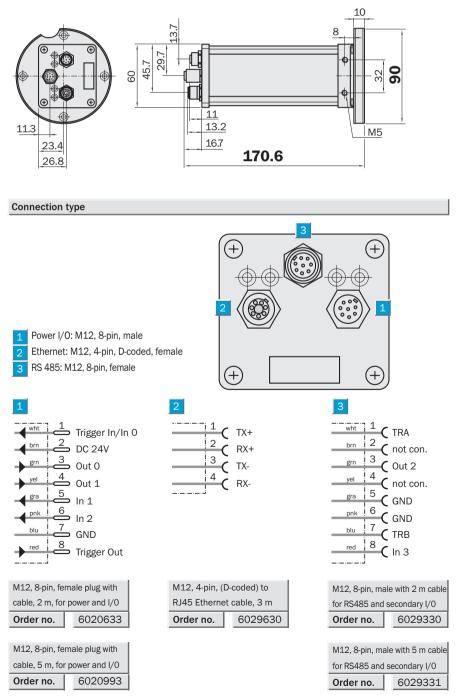
A = 226 G = 184

T

◄ Packaging and printing using OCR/OCV; The IVC-2D camera can not only check geometries, but simultaneously detect and read figures, letters, 2D codes and bar codes, e.g. sell-by dates for food or batch numbers on pharmaceutical packages. The camera system thus becomes a complete solution for inspecting a product's packaging and printing in a single pass.


Smart Cameras: IVC-2D

- Robust design for industrial environments
- Equipped with industrial lighting modules
- Multiple inspections in one camera
- Industrial solutions with a complete set of accessories
- Sub-pixel measurements

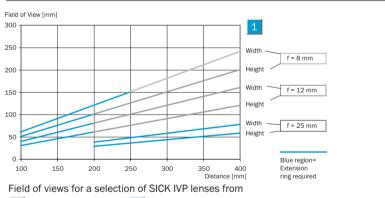


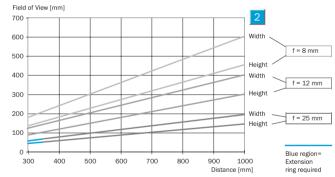
CE

- Power I/O: M12, 8-pin, male (Illumination trigger output)
- 2 Ethernet: M12, 4-pin, D-coded, female
 - 3 RS 485 M12, 8-pin, female

Camera IVC-2D with adapter plate for ring light

Technical data		IVC-2D	M1111 IVC-2D Standard	M1121 IVC-2D HiRes	M1112 IVC-2D Reader	M1122 IVC-2D HiRes Rdr	R1111			
Performance	800 MHz processor and FPGA							 -	-	
	150 MHz processor and FPGA				1					
Memory	128 MB RAM 16 MB flash					1				
	64 MB RAM 16 MB flash									
Interface	10/100 MB Fast Ethernet TCP/IP, UDP/IP						,			
Serial interface	RS 485									
Digital I/O	4 program control inputs (1 trigger input)									
	3 program control output									
	Illumination trigger output									
Enclosure rating	IP 65 with hood									
Options	Stainless steel enclosure									
Dimensions (L x H x D)	161 x 55 x 60 mm									
Resolution	640 x 480									
	1024 x 768									
OCR/OCV										
2D codes/ Bar codes ¹⁾										
Imager	CCD, electronic shutter									
Frame rate	30 Fps									
	24 Fps									
Lens adapter	CS-mount and C-mount ²⁾									
Images size	1/3", 4.8 mm x 3.6 mm									
Ambient temperature	Operation: 0 °C 50 °C									
	Storage: -20 °C 70 °C									
Weight	Approx. 505 g									
Housing material	Aluminium, anodized									
	Connectors = Nickel plated brass									
	Front window of hood = PMMA									


¹⁾ For example: EAN-13, UPC-A, EAN-8, code 39, code 128, pharmacode, i2of5, code 32, DATAMATRIX


²⁾ For CS-mount an adaptor ring should be removed

IVC Studio PC application development tool. Min system req. 550 MHz CPU, 128 MB RAM, CD-ROM or DVD, Fast Ethernet, Win 2000/WinXP.

Graphics driver support for OpenGL 1.3 or higher. IVC Studio in English and German

Diagrams

1 100 mm to 400 mm 2 0.3 m to 1 m

Order information	
-------------------	--

Smart Cameras		Lenses		Lighting		Optional as access	sories	
Туре	Order no.	Туре	Order no.	Туре	Order no.	Туре	Order no.	
IVC-2DM1111	1027190	Lens, 8 mm	5314041	Ring light for IVC-	1027286	Mounting bracket	2032753	
IVC-2D Standard		focal length		2D with 12 high		Hood for IP65	2032637	
IVC-2DM1121	1028407	Lens, 12 mm	5314042	power LEDs, white,		Hood for IP65	2032968	
IVC-2D HiRes		focal length		for working distances		with ICL110		
IVC-2DM1112	1029135	Lens, 25 mm	5314043	from 100 to 300 mm		Extension ring	4041112	
IVC-2D Reader		focal length		Adapter plate for	2033105			
IVC-2DM1122	1029136			ring light 1027286				
IVC-2D HiRes Rdr				T-splitter, M12,	6026503			
IVC-2DR1111	1040057			8-pin for external				
				light connection				
				M12-M12, 8-pin	6026625			
				connector for				
05 00 0000				external light		SENSICK		

1351

IVC-3D: The First 3D Smart Camera in the World!

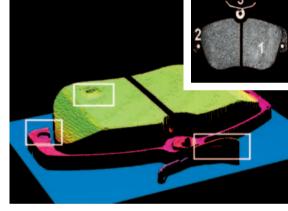
The IVC-3D is the first Smart Camera in the world that is designed to inspect and measure in three dimensions. With tools that are designed to measure height, volume, shape and profiles, 3D applications are now easily solved with the IVC-3D Smart Camera.

Calibrated 3D Inspection at Production Speeds: With the factory-calibrated IVC-3D your glue string inspection is done extremely fast and accurate. With a conveyor speed of 1 meter/ second the verification of the glue string cross-section is done each half millimeter.

IVC-3D is the Key to True Shape Inspection:

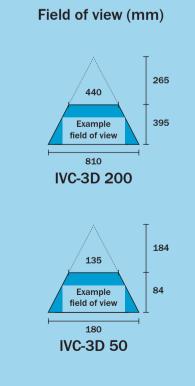
The break pad application is an example of several inspections in one single shot:

- Surface defects
- Height position of the plug
- Angle of the metallic spring


All features are very difficult to detect by 2D cameras, but with IVC-3D the application is quickly developed in the graphical IVC Studio user interface.

Contrast-Independent Inspection by 3D Measurement: The verification of praline box content requires a system that can check dark objects on a dark background. 3D is superior when there is low contrast. The praline application is an example of:

- Correct 3D shape inspection
- Verification of individual praline position
- Missing praline detection by robust height measurement

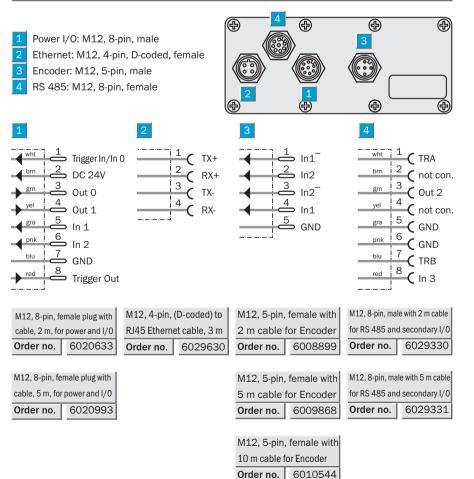


▶ The break pad application

Contrast-Independent
 Inspection by 3D Measurement

 Calibrated 3D Inspection at Production Speeds

Smart Cameras: IVC-3D


- The first 3D Smart Camera available
- Calibrated 3D inspection at production speed
- Contrast independent inspection
- Robust industrial design

SICK IVP IVC-3D

CE

Connection type

Technical data	IVC-3D	11111	21111 IVC-3D 50					
	5000 (1) (100-30/200	100-50 50		 	 	 	
Performance	5000 profiles/second,							
	800 MHZ processor and FPGA				 			
Interface	10/100 MB Fast Ethernet TCP/IP, UDP/IP					 		
Serial interface	RS 485							
Digital I/O	3 program control inputs (1 trigger input)		<u> </u>					
	3 program control output					 		
	Trigger output							
Encoder interface	RS 422							
Max encoder frequency	2 MHz							
Enclosure rating	IP 65							
Laser class	2M/2							
Example field of view (H x W)	200 x 600 mm							
	50 x 150 mm							
3D height resolution	0.2 mm							
	0.04 mm							
Max profile width	1024 points							
Dimensions (L x H x D)	387 x 163 x 69 mm							
	294 x 163 x 69 mm							
Laser wavelength	Typ 660 nm ± 10 nm							
Power supply	24 V DC 20%							
Current consumption	< 1 A							
Ambient temperature	Operation: 0 °C +40 °C							
	Storage: -20 °C +70 °C							
Weight	Approx. 4 kg							
	Approx. 3.2 kg							
Housing material	Aluminium, anodized							
-	Connectors = Nickel plated brass							
	Front windows = compound glass							

IVC Studio PC application development tool

Min. system req. 550 MHz CPU, 128 MB RAM, CD-ROM or DVD, Fast Ethernet, Win 2000/WinXP. Graphics driver support for OpenGL 1.3 or higher.

IVC Studio in English and in German.

Order information Smart Cameras

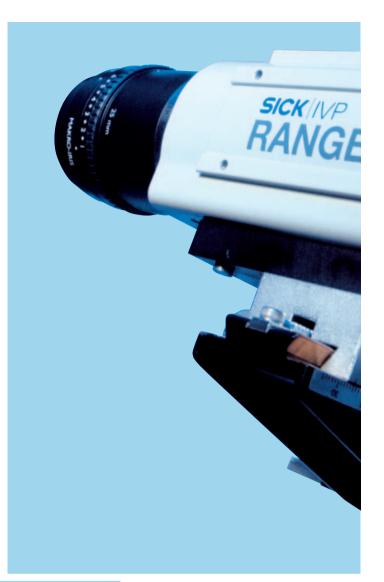
Туре	Order no.
IVC-3D11111	1027539
IVC-3D 200	
IVC-3D21111	1027538
IVC-3D 50	

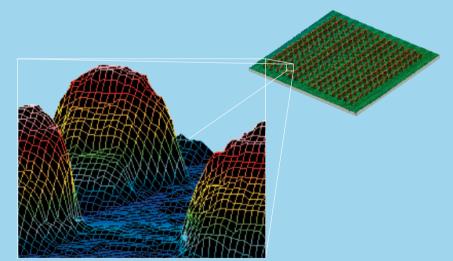
3D Cameras: Ranger C

Ranger C: Fastest 3D Available!

The Ranger C is the ultimate 3D camera for the most advanced needs. With its extreme speed, flexible choice of illumination and optics and with 3rd party imaging software it can be used to solve almost any problem.

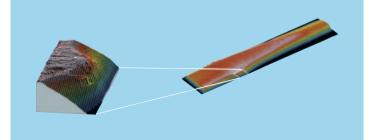
The Ranger C can acquire up to 30,000 profiles per second, each containing up to 1536 high-quality 3D coordinates. The complete 3D calculation is done inside the camera and the ready-to-use 3D coordinates are sent directly to a standard PC via CameraLink. Benefits with Ranger C:


- The fastest 3D available!
- Easy to integrate into existing CameraLink systems
- Flexible product for a wide range of applications
- Best market price/ performance
- Flexible field of view due to free choice of lens and geometry


Examples:

- Volume measurement of solder paste
- Quality of substrates and components
- True shape of logs in sawmill
- Food portioning
- Glue string measurement
- Robot guidance
- Tire inspection
- Rail inspection

Ranger C


► The 3D data is transferred to the PC via CameraLink for easy access. This enables you to base your application as your own, or commercially available imaging libraries.

Component Inspection

Board Inspection

MultiScan on Ranger C: Measure it All at Once!

Ranger C supports MultiScan measurement – this means that the camera can acquire a number of properties (such as 3D, greyscale and scatter) of the measured object in the same scan.

One of the benefits of the Multi-Scan feature is a more robust result by combining 3D and greyscale information for decision making. A second advantage is the need of only one camera, where in other cases there is need for one area camera and one or several line scan cameras to produce the same result. Benefits with MultiScan on Ranger C :

- One camera instead of many
- Up to 1536 pixel 3D width
- Up to 3072 pixel greyscale line width
- Best market price/ performance

Examples:

- Wood quality grading
- Ceramic tile quality grading
- Size and quality grading of fruits
- Rubber and plastic extrusion

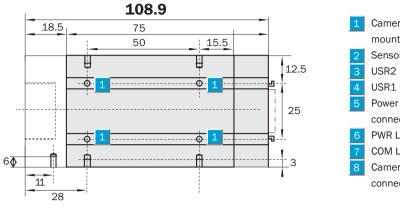
◀ The speed and performance is extremely high thanks to SICK IVP's unique and patented sensor technology. MultiScan is the solution for any in-line inspection task where 2D or 3D alone does not solve the problem.

Gloss measurement

High Speed 3D

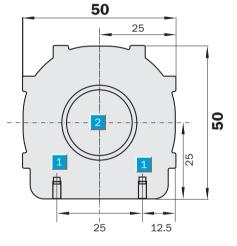
High resolution greyscale

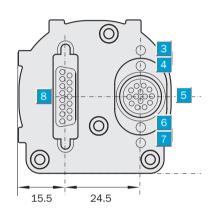
Laser Scatter

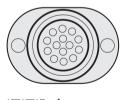


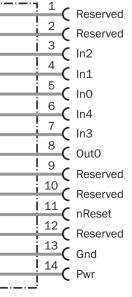
3D Cameras: Ranger C

Dimensional drawing








Ranger C Camera dimension, front (mm)

Connection type Power and I/O

CameraLink Connector

The CameraLink Connector is specified in the CameraLink standard and is a 26-position high-density Mini D Ribbon (MDR) female plug.

Power and I/0 cable, 3 m						
Order no. 1014266						
CameraLink cable, 3 m						
Order no.	er no. 1014310					

ANGER

Sensor Resolution

The fastest 3D available!

existing CameraLink systems

Flexible product for a wide

range of applications

Flexible field of view due

to free choice of lens and

Best market price/

performance

geometry

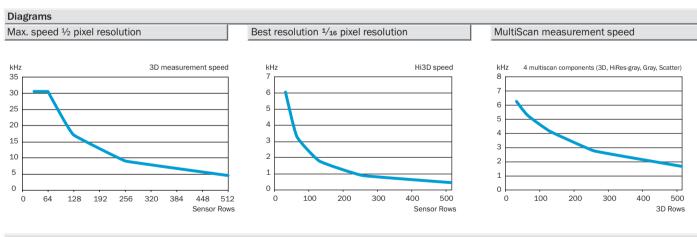
1536x512

512x512

Multiscan technology

Easy to integrate into

4 🛇 → Ø П


3D Cameras

CE

Technical data	Ranger C	55	50	40	50-IR	55-IR			
					-				
Performance	Up to 30,000 3D profiles per second								
	Up to 10,000 Multi Scan blocks per								
	second, each containing 3 features								
Host platform ¹⁾	PC, Windows XP								
Communication interface ²⁾	CameraLink								
Development environment	C++ (VS .NET 2003) or								
	C (VS .NET 2003, VS6)								
Synchronisation of data	Free running, light switch enable,								
	rotary encoder trig								
Dimensions (L x H x D)	50 x 50 x 110 mm								
IR filter	Band pass filter for separation of								
	multiple light sources								
HiRes grey line resolution	3072								
Grey line resolution	1536								
	512								
3Dprofile resolution	1536								
	512								
Scatter resolution	1536								
	512								
Maximum 3D height resolution	13 bits 1/16 pixel								
C-mount optics	1 inch								
	1/2 inch								
Camera I/O	5 in, 1 out, TTL level								
Power	12 24 V CD								
Camera house temperature	5 50 °C								

¹⁾ PC requirements: Min Pentium III, 1,5 GHz, 256 MB RAM, half-length PCI slot.

²⁾ Frame Grabber requirements: 33/66 MHz, PCI 32bit@33MHz. Support for Com port mapping, 2x8 bit two-taps interleave data mode. Line-scan, true line-scan. Pixels/line: 512-64kB depending on application

Order information

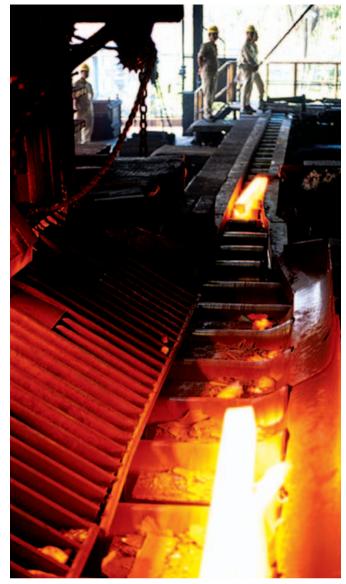
3D Cameras						
Туре	Order no.	Ту				
Ranger C40	1014218	X6				
Ranger C50	1014216	Ra				
Ranger C50-IR	1014203	Ra				
Ranger C55	1014217	La				
Ranger C55-IR	1014205					

Accessories									
Туре	Order no.								
X64 CL Single Board	6030530								
Ranger C Development SW	1014314								
Ranger C Camera Accessories	1014313								
Laser Accessories	1014257								

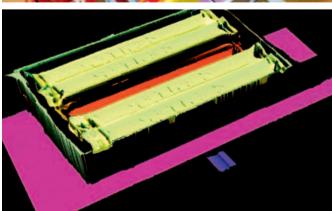
Ruler E: Gigabit 3D for Tough Environments!

Ruler E is a perfect tool for in-line 3D-scanning applications. Our OEM customers and Vision Integrators use the Ruler E to build 3D scanners with the highest performance and accuracy on the market. It can be used to measure object height, shape and volume, to detect and locate shape defects, to make quality grading, etc. It is designed for tough environment of wood, steel and automotive industries and with the heating option it can operate at temperatures down to –30 °C.

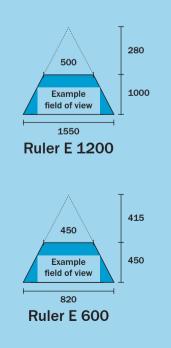
Ruler E is a camera with in-built laser and optics for a predefined field of view, which makes it very easy to install. The data output from the Ruler is calibrated world coordiantes (x, y, z) in millimetres which are delivered on a high speed Gigabit Ethernet interface to a hosting PC. Application development is made in a high level VB .Net or C/C++ programming environment.


Benefits with Ruler E:

- High speed 3D data
- Factory calibrated
- Easy to install and integrate
- Data from several Rulers can be combined
- Free choice of image analysis routines
- Standard interface, Gigabit
 Ethernet
- Robust housing
- Operates in low temperatures
- Best market price/ performance

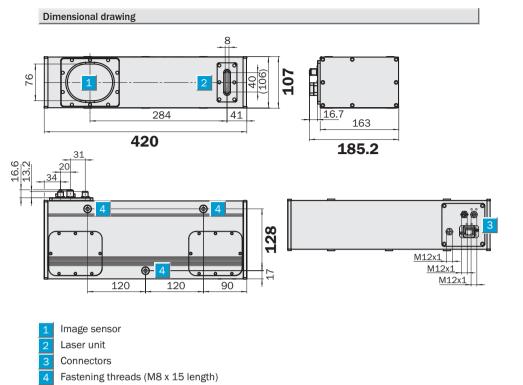

Examples:

- Log sorting
- Board optimization
- Pallet quality grading
- Bulk volume measurement
- Meat cut-up optimization


 Ruler E for the toughest environments

Field of view (mm)

► High quality 3D in production speed


- Easy to integrate
- Data as world coordinates
- Robust housing
- Operates in low temperature
- Best market price/ performance

Laser class 2M/3B

Connection type

10 m

20 m

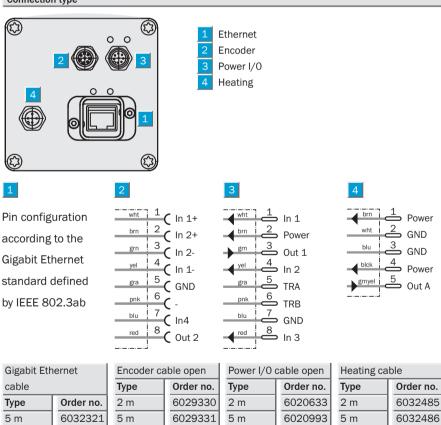
70 m

6032322

6032323

6033028

10 m


6032324

10 m

15 m

6022152

6022153

Technical data

Ruler E 2111 2112 2121 2122 1111 1112 1211 1121 1212 1122 1221 1222

Performance	10.000 3D profiles /second							
Interface	Gigabit Ethernet				 _			
Host platform ¹⁾	PC, Windows XP				_			
Development environment	.Net Assembly, C, or C++ (VS .NET 2003)			_	_			
Synchronisation of data	Free running, light switch enable,				 _			
	rotary encoder trig				 _			
Encoder interface	RS 422				 _			
Max. encoder frequency	2 MHz			_	_			
Digital inputs	3 x HIGH = 10 V 28.8 V				_			
Digital outputs	1 x B - type; < 100 mA				_			
Power supply	24 VDC				 _			
Current consumption	<1A							
Ripple	< 5 Vpp							
Dimensions (L x H x D)	420 x 163 x 105 mm							
Weight	7.0 kg							
Enclosure rating	IP 65							
Housing material	Aluminium, surface grey varnished							
	Connectors: nickel-plated brass							
	Windows: float glass, AR coated							
Shock load	15 g, 3 x 6 directions							
Vibration load	5 g, 58 150 Hz							
Laser class	2M							
	3B		_					
Laser wavelength	660 ±15 nm							
Laser filter	60 nm FWHM							
Imager	CMOS							
Max. profile width	1024							
'	1536				 	 	 	
Typical height resolution	0.4 mm							
	0.2 mm				 		 	
Example field of view (H x W)	250 x 1200 mm							
	250 x 600 mm				 		 	
Scatter measurement		i						
Heating elements								
Ambient temperature	Operation: 0 +40 °C							
· · ·	Operation: -30 +40 °C							
	Storage: -30 +70 °C							

 $^{\rm 1)}~$ Recommended PC for Vision System: 3.0 GHz CPU, 800 MHz bus speed, 512 MB RAM (For evaluation purposes, a PC with lower performance may be sufficient)

Order information	I									
3D cameras					Ruler E accessorie	s	Opto fibre accessories			
Version	Туре	Order no.	Scatter	Heating	3B Laser	Туре	Order no.	Туре	Order no.	
Ruler E600	Ruler-E2111	1029237				Ruler E	1014241	Opto adapter	6032331	
Ruler E600S	Ruler-E2112	1029238				accessory kit		Opto fibre, 100m	1014338	
Ruler E600B	Ruler-E2121	1028042				Gigabit Ethernet	6032329	Anntant of Dal 5		
Ruler E600SB	Ruler-E2122	1029239				board		Content of Ruler E a (1014241)	ccessory Kit	
Ruler E1200	Ruler-E1111	1028041				Ruler development	2038800	Туре	Order no.	
Ruler E1200S	Ruler-E1112	1029230				SW		T-junction connector	6026503	
Ruler E1200H	Ruler-E1211	1029231				Gigabit network	6032330	Power supply	1014242	
Ruler E1200B	Ruler-E1121	1029233	1			switch x5		Gigabit Ethernet	6032322	
Ruler E1200SH	Ruler-E1212	1029232				Ruler E key box	1029242	cable, 10 m	0032322	
Ruler E1200SB	Ruler-E1122	1029234				T-junction connector	6026503		6030121	
Ruler E1200HB	Ruler-E1221	1029235				Power supply	1014242	Power and I/O cable,	0030121	
Ruler E1200SHB	Ruler-E1222	1029236	1					M12 to M12, 2 m	6020220	
								I/O cable,	6029330	
								M12 to open, 2 m		

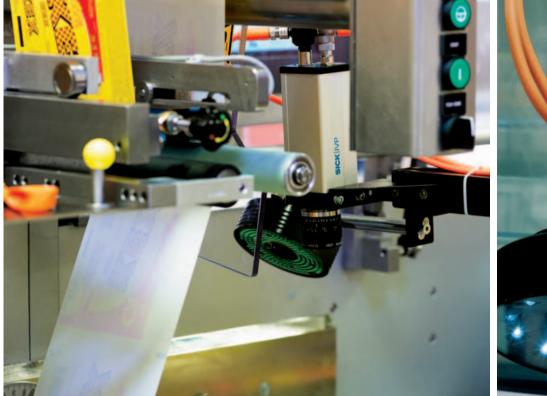
6029330

Encoder cable, M12 to open, 2 m

Back light, incident light and line laser

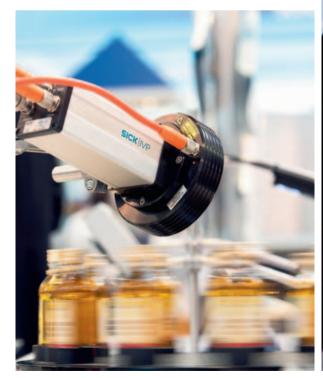
Lighting Modules: Incident Light, Back Light and Line Laser

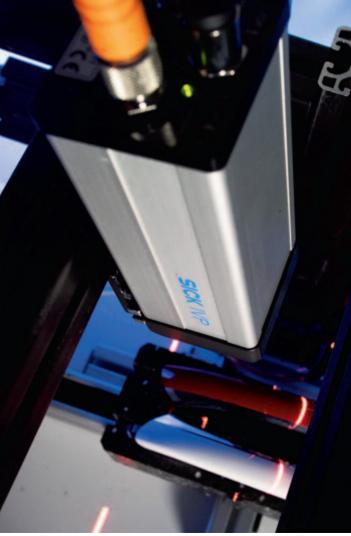
There is no optical recognition without light – a simple rule. However, it is not as easy to provide the perfect illumination for camera sensors. High cycle rates, fast moving products, difficult to capture objects and ambient conditions all have an affect on illumination.

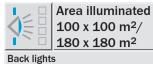

> ICL lighting, incident lighting and back light, offers nonfluctuating, high intensity illumination through constant-current regulation. ICL lighting does not require a ballast and has a dedicated input receiving the camera trigger signals from the camera.

Wherever tasks based on height information must be solved, the Industrial Laser Projector together with a 2D-sensor can be the basis for a reliable solution. A laser line is projected on a part and a matrix camera takes a picture of the line from a different angle. This way a height profile can be calculated.

All components of the Industrial Laser projector are easily connected to each other: The cameras are connected to the ICT-B laser control box via standard M12 cables and via T-splitter to power supply. The lasers are connected to the prepared terminals in the ICT-B. Additionally a trigger sensor for the camera can be easily connected to the ICT-B.


By applying a filter to the camera, from our accessories, the solutions become very robust against ambient light changes.

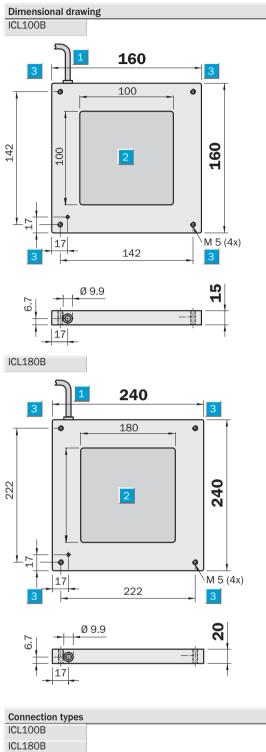

SCHUP



In automatic packaging plants, big and small objects are checked by camera sensors. Correct illumination plays an essential part in this.



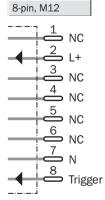
Intense Camera Light ICL100B, 180B, Back Lights



- Sturdy housing (IP 67)
- Flat design (15 mm/20 mm)
- Intense illumination $(\geq 8 \text{ W/m}^2)$
- Enhanced edge intensity to compensate for lens characteristics (vignetting)
- Constant current control
- Trigger input

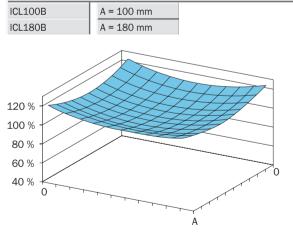
((🗆

S	ee chapter Accessories
С	Cables and connectors




Cable with M12 plug, 8-pin Area illuminated

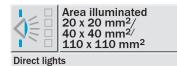
Mounting hole, M5


Technical data	ICL	100B	180B				
Optical characteristics							
Area illuminated	100 x 100 mm ²						
	180 x 180 mm ²						
Light source	LED, 630 nm						
Emittance ¹⁾	≥ 8 W/m ²						
Higher emittance on outer regions	Approx. 20 % ²						
Degradation period of LEDs ³⁾	> 50,000 h ⁴⁾ /> 35,000 h						
Regulation of emittance on V_S	Constant at V_s = 19.2 to 28.8 V						
Electrical characteristics			_				
Supply voltage V _S	19.2 28.8 V DC ⁵⁾						
Residual ripple	5 V _{PP}						
Current consumption	Approx. 250 mA						
	Approx. 550 mA						
Trigger input	TTL, 28.8 V max. ⁵⁾ , LOW = lighting on						
VDE protection class ⁶⁾	V						
Connecting cable	M12 plug, 8-pin, L = 0.8 m ⁷)						
	M12 plug, 8-pin, L = 1.2 m ⁷)						
Mechanical characteristics							
Enclosure rating	IP 67						
Weight	800 g						
	2.0 kg						
Ambient conditions							
Ambient temperature	Operation: 0 °C +50 °C						
	Storage: -25 °C +70 °C						
Shock load	Single: 15 g						
	Continuous: 10 g						
Vibration	± 0,35 mm at 10 58/s						
	5 g, at 58 150/s						
Humidity	93 %, relative						
 Emittance at distance of 0 m, mean value over entire area illuminated This compensates for normal lens 	 ⁴⁾ In triggered mode at pulse- interval ratio of ≤ 20 % ⁵⁾ Reverse-polarity protection 						

 2)
 This compensates for normal lens
 5)
 Reverse-polarity protection

 vignetting (see vignetting compensation)
 6)
 Reference voltage 50 V DC

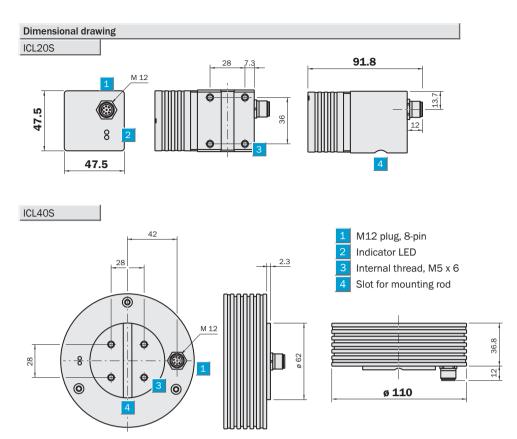
 3)
 Drop in intensity to 50 %
 7)
 Assignment, see connection diagram


Vignetting compensation

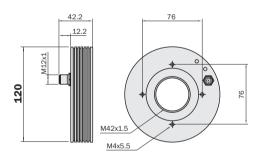
Order information						
Туре	Order no.					
ICL100B 321	1024224					
ICL180B 321	1024225					

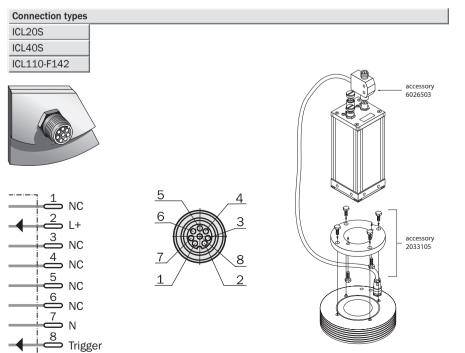
Filter for ICV-2D with C-mount lenses							
Туре	Order no.						
OBF-IVC-630-1	2039202						

Intense Camera Light ICL20S, ICL40S, ICL110-F142, back lights



- Sturdy housing (IP 65)
- Intense illumination (approx. 50 W/m²)
- Enhanced edge intensity to compensate for lens characteristics (vignetting)
- Constant current control

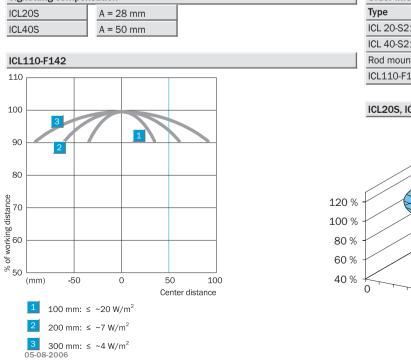

Trigger input



See chapter Accessories					
Cables and connectors					
Mounting systems					

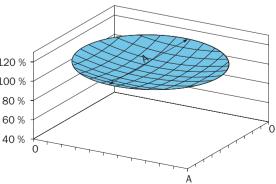
ICL110-F142

Technical data	ICL	20S	40S	110-				
Optical characteristics				F142				
Area illuminated	Ø 28 mm; □ 20 x 20 mm ²							
	Ø 50 mm; □ 35 x 35 mm ²			1				
	110 mm x 110 mm at 250 mm dist.							
Nominal distance	70 mm							
	140 mm							
	100 300 mm		_					
Light source	LED, 525 nm							
Emittance ¹⁾	Approx. 50 W/m ²							
Higher emittance on outer regions	Approx. 20 % ²							
Degradation period of LEDs ³⁾	≥ 50,000 h							
Regulation of emittance on V_S	Constant at V _S = 19.2 28.8 V							
Electrical characteristics								
Supply voltage V _S	19.2 28.8 V DC ⁴⁾							
Residual ripple	5 V _{PP}							
Current consumption	Max. 150 mA							
	Max. 250 mA							
	Max. 400 mA							
Trigger input	TTL, max. 28.8 V ^{4} , LOW = lighting on							
VDE protection class ⁵⁾	III							
	V							
Connecting cable	M12 plug, 8-pin ⁶⁾							
Mechanical characteristics								
Enclosure rating	IP 65							
Weight	230 g							
	540 g							
	580 g							
Ambient conditions								
Ambient temperature	Operation: 0 °C +50 °C							
	Storage: -25 °C +70 °C							
Shock load	Single: 15 g							
	Continuous: 10 g							
Vibration	± 0.35 mm at 10 58/s							
	5 g at 58 150/s							
Humidity	93 %, relative							

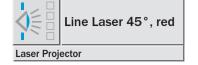

1) At nominal distance 2) This compensates for normal lens 4) Reverse-polarity protection

vignetting

⁵⁾ Reference voltage 32 V DC
 ⁶⁾ Assignment, see connection diagram

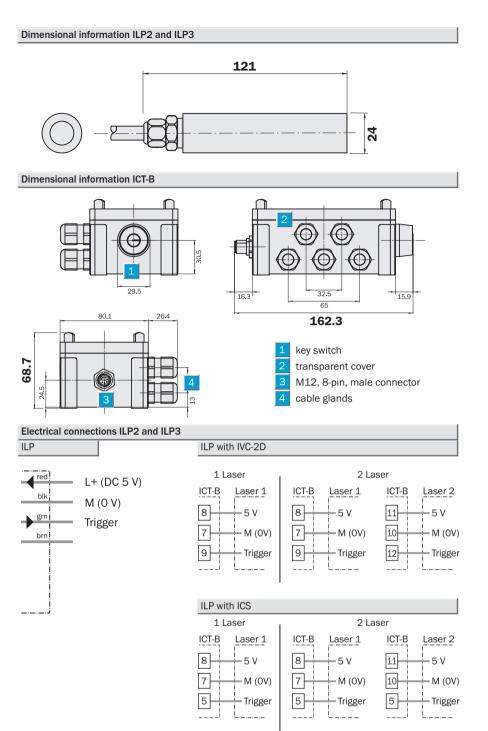

³⁾ Drop in intensity to 50 %

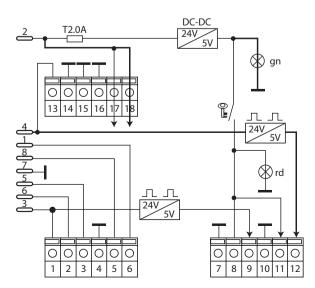
Vignetting compensation


Order information						
Туре	Order no.					
ICL 20-S212	1024222					
ICL 40-S212	1024223					
Rod mounting	2029022					
ICL110-F142	1027286					

ICL20S, ICL40S

SENSICK CATALOGUE 1371


ILP Industrial Laser Projector with Accessories


- Robust mechanical, electrical and optical design
- Long life time
- Flexible mechanical set-up
- Easy connection to IVC-2D and ICS
- High availability and reliability due to shock and water proof housing

(6

Electrical connections ICT-B

Technical data		ILP2-	ILP3-	ICT-B				
		L11111	L11111					
Laser fan angle	45°							
Laser wavelength	660 nm ± 10 nm (red)							
Laser class after optics	II/2M							
DCRH/IEC	III/3B							
Laser line homogeneity	± 25 %							
Beam divergence	≤ ± 1.5 mrad							
Focal length	∞							
Laser power output	< 1 mW							
	< 5 mW							
Pulsed operation	Controlled by trigger input ¹⁾							
Minimum pulse length	10 µs							
Pulse rise + delay time	< 3 µs							
Power down time	< 1 µs							
Duty cycle	Any ²⁾							
Life time of laser diode	50.000100.000h h MTTF at 20°C							
Power requirement V _S	4.5 6 V DC							
¥	24 V DC ± 20%							
Delay after power on	< 10 ms				İ dara			
Operating current	<150 mA at VS = 5 V ± 5%							
	< 50 mA ³⁾							
Output voltage for laser	5.3 V DC ± 2%				i			
Max output current for lasers	≤ 500 mA ⁴⁾				i			
Residual ripple	< 5 V _{PP}				i			
Circuit protection	A ⁵)							
Connection type	5 m cable, 4-pin, terminal end							
	M12, 8-pin, male connector							
	for camera connection				i			
	Cable glands and terminals				i			
	for laser connection				i			
Shock load	Single 15 g; continuous 10 g							
/ibration resistance	± 0.35 mm at 10							
	58/s; 5 g at 58 150/s							
	1g, 10 2000 Hz, 3 axes				1			
Ambient Temperature	Operation: -10 +48 °C				1			
F	Storage: -20 +70 °C				i			
Enclosure rate	IP67	_			1			
Weight	Approx . 400 g							
~	Approx. 350 g				1			
Housing material	Aluminum, anodized							
	Plastics					 	 	
¹⁾ HIGH (4.5 6V DC) = Laser on,	 Total sum of all connected lasers 							

 HIGH (4.5 ... 6V DC) = Laser on, LOW or not connected = Laser off
 2) Autimum allowed and the second se 4) Total sum of all connected lasers
5) A = reverse polarity protection

²⁾ Continuous wave allowed

³⁾ Current for ICT-B only (increased when Laser connected to ICT-B is on)

Ordering information

oraoning information							
Main Components							
Туре	Order no.						
ILP2-L11111	1028625						
ILP3-L11111	1028626						
ICT-B	1028342						

Accessories								
Туре	Order no.							
Mounting bracket for lasers	2034486							
Optical filter, red, for lenses	2034437							
5314041 and 5314042								
OBF-IVC-660-1 IVC-2D filter for	2039191							
C-mount lenses								
T-Splitter	6026503							
Extension cable, M12, 8-pin, 1 m,	6026625							
Female connector, M12, 8-pin,	6020633							
straight, with 2 m cable								