Contrast sensors, Color sensors, Luminescence sensors, Fork sensors

Contrast scanners
■ Very high contrast
resolution

- Switching threshold can be set manually or by Teach-in (static or dynamic)
■ User-friendly setting via display
- High switching frequency
- Can detect print marks, using the difference in contrast between the marks and the background
- Also available with fibreoptic cables

Luminescence sensors
React to luminescent substances
■ Detect markings otherwise invisible to the naked eye

- Scanning range adjusted by changing lens
- Also available with fibreoptic cables

Color sensors
■ Identification, checking and sorting according to color

- Precise color recognition using transmitted and incidental light
- Detection of up to three colors
- Simple programming by means of Teach-in
- Also available with fibreoptic cables

Fork sensors

- Sender and receiver in one housing
- Large number of different fork widths
- Can be precisely adjusted to the object
- Detection of minute differences in light intensity
- Teach-in function by button or control cable (WF 3T, WF 5T)

Contents

Contrast sensors, Color sensors,
Luminescence sensors, Fork sensors

General

Contrast scanners are integral components of many automated production processes today, for example, in the packaging and printing industries. They are used to detect all kinds of contrasts, e.g., print marks on films or packaging materials. Of course, they can be used in all situations where contrasts have to be detected quickly and accurately. The difference in brightness between mark and background is decisive for reliable detection of contrasts.

The contrast scanners from SICK operate according to the reflectance principle and even detect weak gray value differences on matt, shiny and transparent surfaces. A large selection of equipment types is available with various procedures for detecting contrasts and with different user interfaces for multifaceted requirements.

Applications

Selection/Overview

Almost all goods and products can be counted, sorted and controlled when they have contrast marks. Typical examples included:

- Controlling packaging processes
- Printing, folding, cutting continuous formats and putting them into envelopes
- Positioning EDP forms
- Horizontal cutting control
- Positioning labels
- Positioning cans and tubes
- Checking counters
\square Checking expiry dates
Detecting codes

KT10-2: For flexible applications in the packaging and printing industries. High speeds with greatest precision and automatic drift correction

KT8CAN: CAN bus, unlimited communication through integration into the machine control

The KT5 series offers a large number of options individually suited to your application, ranging from different scanning distances, light spot positions and Teach-in to the elegant display version. 3-colour technology (RGB diode) enables resolution of all contrasts.

KT5display: Quality display for assessing detection reliability
KT5W...6: RGB diode with static 2-point Teach-in
KT5W...3: RGB diode with dynamic Teach-in for learning the mark "on the fly"
KT5RG...6: The sensor for standard applications
KT5G...1: Contrast scanner with potentiometer adjustment and optional analogue output
KT5L-Laser: For precise detection of smallest objects at long scanning distances
KT5 fibre-optic cables: Used for harsh environmental conditions and where space is limited

KT3W: Small build - great contrast detection
KT3L laser: The problem solver - safely detecting smallest marks and objects

KT2: Fast and easy adjustment, robust metal housing

KT1M: Cylindrical contrast scanner, for simple applications

Definition

Scanning distance

Distance between lens front edge and material to be scanned.

Scanning distance tolerance

Operating range for the scanning distance in which a change of distance does not result in faulty switching. The size of the operating range depends on the size of the contrast to be resolved.

\triangle Scanning distance tolerance

Light spot dimensions

Size of light spot at scanning distance. The light spot size is decisive for switching accuracy and for reliability of reading the printed image.

Light spot position

The light spot position vertical or horizontal to the short side of the equipment determines the insertion position. The best switching behavior is achieved when the light spot hits the mark lengthwise.

$\begin{array}{ll}\text { Correct } & \text { Incorrect } \\ \text { light spot } & \text { light spot }\end{array}$

- Light spot position

Definition

Light emission side*

You can select the light emission side.
The lens can be replaced by a dummy screw connection.

Release delay

The release delay enables increasing the impulse time of the switching signal. The diagram below shows the mode of operation.

- Release delay (PNP, dark-switching)

Shiny surfaces

Increased switching reliability can be achieved on shiny surfaces by an angle of approx. 15° from a vertical line. The shiny components of the reflected light are mirrored away, and the KT only detects diffuse light scattered back.

Mounting

Mounting site

The contrast scanner is mounted at a spot at which the material to be scanned has the least lateral and vertical movements. Compensation is made for lateral movements by correspondingly long marks. The possible contrast resolution decreases with increasing vertical movements.

Attachment

Attachment must permit a reproducible, adjustable scanning distance in accordance with the purpose, i.e., flexible mounting with an adjustment option.

Strong vibrations, which influence the scanning distance, must be excluded.

Contrast scanner

KT 10-2: for high-speed applications

Very high speeds, poor contrasts and reflective materials put high demands on a sensor. When you need precise positioning, the KT 10-2 is the right choice.

Simple operation is a focus in the 2nd generation of the KT 10. During the teach-in procedure, the sensor selects the emission colour, which fits the existing contrast best. If print marks are to be detected on shiny foils, the sensor is automatically set for them. Thanks to the automatic drift correction, the KT 10-2 adjusts its switching threshold during operation. Consequently, changing environmental conditions cannot

The optional light exits provide flexibility for many installation situations. The robust metal housing ensures long service life.

The very short and constant response time of $20 \mu \mathrm{~s}$ is the basis for high speed applications. The precise light spot provide high reproducibility and a high geometric resolution. Consequently, accurate positioning is ensured.

The reliability of detection is displayed on the bar display. If the print quality during production deteriorates, this also can be visualised by the KT 10-2.

In addition, up to five sensor parameters for different contrasts can be stored in the sensor and retrieved when required.

© Synchronization of a printing process

Precise detection of printing, folding and reference marks as well as high processing speed is a matter of course for the contrast scanner, as is the great reproducibility required in printing machines, high performance copiers and in continuous form
systems for printing, cutting, folding and inserting letters into envelopes. Of course, the contrast scanner can also be used for other applications, i.e. packaging, which place great demands on contrast detection and speed.

Scanning distance 12.5 mm Lens (10 mm)
Contrast scanner
$20 \mu \mathrm{~s}$ response time (jitter <10 $\mu \mathrm{s}$) for fast applications
Precise light spot for high repeatability
RGB emission LED (automatic selection)
2 light exits (changeable)

- 5 bank memory
- Automatic drift correction

(\in

Dimensional drawing

Adjustments possible

1	Lens (light transmission)
2	M5 mounting holes, 5.5 mm deep
3	See dimensional drawing of lens
4	Blind screw can be replaced by lens
5	5 -pin, M12 $\times 1$ plug (rotatable trough 90°)
6	Function signal indicators (yellow)
7	Bar display
8	Teach-in button/„+" and „-" button

Connection types

All types

5-pin, M12

Technical data	KT10W-2-	P 1115	N1115	P2115	N2115					
Scanning distance	from front edge of lens $10 \pm 3 \mathrm{~mm}$									
	from front edge of housing $12.5 \pm 3 \mathrm{~mm}$									
Light source ${ }^{1)}$	LED; red, green, blue									
Wave length (nm)	640, 525, 470									
Light spot dimensions	$4 \times 0.8 \mathrm{~mm}$ (at 10 mm)									
Light spot position	Longitudinal									
	Transverse									
Supply voltage $\mathbf{V}_{\mathbf{S}}$	$10 . . .30 V^{\text {DC }}{ }^{2)}$									
Residual ripple ${ }^{3)}$	$<5 \mathrm{~V}$									
Current consumption ${ }^{4)}$	$<80 \mathrm{~mA}$									
Switching outputs	PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}}-<2 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$									
	NPN: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}} / \mathrm{LOW}=<2 \mathrm{~V}$									
Output current I_{A} max.	< 100 mA									
Output logic	Light/dark via teach-in procedure (default)									
(Adjustable)	Light switching; dark switching									
Switching frequency max. ${ }^{\text {5) }}$	25000/s									
Response time ${ }^{6}$	$20 \mu \mathrm{~s}$									
Jitter	$<10 \mu \mathrm{~s}$									
Teach-in input ET	PNP: Teach $>10 \mathrm{~V} \ldots<\mathrm{V}_{\text {S }}$									
ET $>2 \mathrm{~ms}$	Run 0 V or unswitched									
	NPN: Teach 0 V									
	Run V_{S} or unswitched									
Teach-in procedure	Dynamic teach-in (default)									
(Adjustable)	2-point-teach-in									
Timer deactivation delay	None (default)									
(Adjustable)	20 ms									
Blanking input AT										
Blanked	PNP: AT > 10 V									
Free running	AT $>2 \mathrm{~V}$ or unswitched									
Blanked	NPN: AT $<2 \mathrm{~V}$									
Free running	AT $>10 \mathrm{~V}$ or unswitched									
Retention time	25 ms non-volatile memory									
Connection type	M12 plug, 5-pin									
VDE protection class ${ }^{7}$	回									
Circuit protection ${ }^{8)}$	A, B, C, D									
Enclosure rating	IP 67									
Ambient temperature T_{A}	Operation -10 ... $+55^{\circ} \mathrm{C}$									
	Storage -25 ... $77{ }^{\circ} \mathrm{C}$									
Shock load	To IEC 68									
Weight	Approx. 400 g									
Housing material	Cast-zinc									
1) Average service life $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 2) Limit values 3) May not exceed or fall short of V_{S} tolerances	4) Without load 5) Signal transit time with resistive load 6) With light/dark ratio 1:1 and deactivated automatic drift correction ${ }^{7}$) Reference voltage 50 V DC	8) $\mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected $B=$ Outputs Q and Q short-circuit protected				$\begin{aligned} & \mathrm{C}=\text { Interference pulse suppression } \\ & \mathrm{D}=\text { Outputs overcurrent and } \\ & \text { short-circuit protected } \end{aligned}$				

Scanning distance							
100							

Order information

Type	Order no.
KT10W-2P1115	1028232
KT10W-2N1115	1028233
KT10W-2P2115	1029070
KT10W-2N2115	1029071

KT8 CAN:

communication without limits

The KT8 CAN is distinguished by its ability to communicate. This makes it possible for users to adapt the sensor specifically to their requirements and integrate additional functions conveniently into their machines.

Almost any number of parameter records, i.e. taught-in sensor settings (e.g. for different packaging or printed materials), can be stored via the CAN interface. If required, these parameters are transmitted to the sensor. At the same time, this procedure simplifies the validation process in accordance with "CFR21 part 11" (e.g. in the pharmaceutical industry). The sensor setting is stored as a reproducible parameter record
 is no longer need to maintain the settings in written form.

In addition, important process data such as contamination level or the current switching threshold can also be accessed via modem or internet.

The advantage: Setup times are reduced, critical sensor settings are detected at an early stage and preventative measures become possible. As a result, malfunctions can be corrected quickly and efficiently in emergencies.

Three colour LED, gloss adjustment, automatic drift correction and short response time round off this product.

- KT contrast scanner in water meter manufacture

Easy parameter management through integration into CAN network

$\xrightarrow{\|} \leadsto \|$
Scanning distance 10 mm (housing 10 mm)
Contrast scanner
CAN-interface

- Parameter administration
- Process documentation
- Process adaption

Automatic drift correction
Short response time
\square Precise light spot
Red, green, blue emission LED

- light exits (changeable)

$C \in \square$

Connection type
All types

8-pin, M12 x 1

Order informa	
Type	Order no.
KT8W-P111C	1027919
KT8W-N111C	1028223

KT 5: Contrast scanner with intelligent display

Contrast scanners are used mainly for reading print and registration marks. Here the KT 5 sets new standards in performance and friendlyness. The light bar display provides information about the security of detection. In addition, the user can see the current signal strength and switching threshold. Also, if required the switching threshold may be adjusted manually using the +/- keys. For example, if printing quality changes, the sensor can be adjusted simply "in process".

Thanks to the three-colour-LED-technology, the optimum emission colour is automatically selected depending on the existing contrast. Futhermore, the precise 2 -point-Teach-in procedure is provided, where the gray values of the mark and the background are taught-in. The sensor sets the optimum switching threshold automatically.

A high degree of repeatability is ensured due to the homogenous light spot and the automatic gloss adaptation for shiny materials. The switching frequency of $10,000 / \mathrm{s}$ enables an economic operation of the machine. A wide range of sensors with different scanning distances and individual alignment and attachment options cover a wide range of different applications.

Teach-in

- After the first Teach-in procedure, the red transmitter light and the status indicator blink and signal that a second Teach-in procedure must be triggered.

- The LED status indicator switches off after the second teach process.
- Detection reliability:

1 LED on: No reliable operation - minimum contrast difference
≤ 4 LEDs on: Capable operation - sufficient contrast difference
>4 LEDs on: Reliable operation - high contrast difference

- Detection reliability: The bar display signals the quality of the taught-in contrast.

 The more LEDs light, the more reliable is the detection of the mark.
Manual precise setting

1. Switching threshold
Switching threshold adjustment: The bar display visualizes the current level of the material to be scanned, which is on hand.
The switching threshold is in the middle of the bar display.
As soon as the switching threshold is exceeded or fallen short of, the switching output changes its state.
The switching threshold is correspondingly raised or lowered a half LED segment per pressing of the keys.
[^0]$\stackrel{\|}{\|}$
Scanning distance 10/20/40 mm

Contrast scanners
10-segment bar display
Static 2-point Teach-in to mark and background via control cable or control panel on unit Detection reliability display - Subsequent manual adjustment of the switching threshold Switching frequency 10,000/s
Automatic gloss adaptation

CE UL

See chapter Accessories
Cables and connectors
Mounting systems
Lens

Technical data	KT 5W-2	P1116D	P1216D	P1316D	P1126D	P2116D	N1116D	N1216D	N1316D	N1126D	N2116D
Scanning distance	$10 \pm 3 \mathrm{~mm}$										
from front edge of lens	$20 \pm 3 \mathrm{~mm}$										
	$40 \pm 3 \mathrm{~mm}$										
Light spot dimensions	$1.2 \times 4.2 \mathrm{~mm}$										
	$1.5 \times 5.5 \mathrm{~mm}$										
	$1.1 \times 4.2 \mathrm{~mm}$										
Light source ${ }^{\text {1) }}$; light type;	LED; red, blue, green;										
Supply voltage $\mathbf{V}_{\mathbf{S}}$	10... $30 \mathrm{~V} \mathrm{DC}^{2}$										
Residual ripple ${ }^{3)}$	$<5 \mathrm{~V}_{\mathrm{PP}}$										
Current consumption ${ }^{4)}$	$<130 \mathrm{~mA}$										
Switching outputs	PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}}-<2 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$										
	NPN: HIGH $=\mathrm{V}_{\mathrm{s}} / \mathrm{LOW}=<2 \mathrm{~V}$										
Output current I_{A} max.	100 mA short-circuit protected										
Response time ${ }^{\text {5 }}$	$50 \mu \mathrm{~s}$										
Switching frequency ${ }^{6}$	To 10000/s										
Time delay	20 ms										
Light spot position	Longitudinal										
	Transverse										
Teach-in input ET	PNP: Teach $>10 \mathrm{~V} . . .<\mathrm{V}_{\mathrm{S}}$										
	Run OV or unswitched										
	NPN: Teach OV										
	Run V_{S} or unswitched										
Retention time	25 ms non-volatile memory										
Connection type	Plug 5-pin, M12										
VDE protection class ${ }^{7}$	回										
Enclosure rating	IP 67										
Circuit protection ${ }^{8}$	A, B, C										
Ambient temperature T_{A}	Operation $-10 \ldots+55^{\circ} \mathrm{C}$										
	Storage -25 ... $77{ }^{\circ} \mathrm{C}$										
Shock load	To IEC 68										
Weight	Approx. 400 g										
Housing	Coated metal										
1) Average service life $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 2) Limit values	3) May not exceed or fall short of V_{S} tolerances 4) Without load		transit tim ght/dark nce volta	me with r ratio 1:1 ge 50 V	resistive lo DC		$\text { 8) } \begin{aligned} & \mathrm{A}=V_{8} \\ & \mathrm{pi} \\ & \mathrm{~B}=0 \\ & \mathrm{C}=\mathrm{ln} \end{aligned}$	V_{S} connec protected Outputs sh nterferenc	tions rev hort-circu ce pulse	erse-pola it protec suppress	

Scanning distance

[^1]Order information

Preferred type
KT 5W-2P 1116D
KT 5W-2P 1216D
KT 5W-2P 1316D
KT 5W-2P 1126D
KT 5W-2P 2116D
KT 5W-2N 1116D
KT 5W-2N 1216D
KT 5W-2N 1316D
KT 5W-2N 1126D
KT 5W-2N 2116D

Order no.
1026538
1026577
1026578
1026579
1026584
1026540
1026580
1026581
1026582
1026583

Contrast scanner with static Teach-in on mark and background

When especially high precision is required for contrast detection, e.g., in detecting marks on highly polished materials, the time (or - more precisely - the millisecond) is ripe for the KT $5 \mathrm{~W}-2 \mathrm{P} / \mathrm{N}$ \qquad 6 contrast scanner.

Thanks to its three-color LED, the equipment can activate the optimum transmitter light source for every contrast. Additionally, it has an especially accurate, static Teach-in procedure. The gray values of the mark to be detected are taught-in
 separately here either via the Teach-in button on the equipment or an external control wire. The scanner sets the ideal switching threshold from the two determined gray values.

The high precision of the contrast detection, automatic shine adjustment with material to be scanned with high reflectance, scanning distances of $10 \mathrm{~mm}, 20 \mathrm{~mm}$ and 40 mm , switching sequence of 10 kHz and individual alignment and attachment options cover numerous tasks in which it is a questions of "brilliant" detection results.

- After the first Teach-in procedure, the red transmitter light and the status indicator blink and signal that a second Teach-in procedure must be triggered.
- The optimum transmission light was selected automatically.

y
$\stackrel{0}{2}$

Light-/dark-switching not required: equipment switches for the material to be scanned, which was under the light spot at the first Teach-in procedure (mark or background).

The material speed must be zero during Teach-in (machine is idle).

- The Teach-in button can be locked against unintentional activation with "Run".

A Teach-in procedure can be triggered when the switch setting is not defined.

Scanning distance 10/20/40 mm

Contrast scanners
Static Teach-in to mark and background via control cable or control panel on unit
Automatic switching threshold adjustment for detection of extremely shiny objects Switching frequency 10 000/s
Light source red, green, blue

Dimensional drawing

All types

Connection type
All types

5-pin, M12 x 1

Technical data	KT 5W-2	P1116	P1126	P1216	P1316	N1116	N1216	N1316			
Scanning distance	$10 \pm 3 \mathrm{~mm}$										
from front edge of lens	$20 \pm 3 \mathrm{~mm}$										
	$40 \pm 3 \mathrm{~mm}$										
Light spot dimensions	$1.2 \times 4.2 \mathrm{~mm}$										
	$1.5 \times 5.5 \mathrm{~mm}$										
	$1.1 \times 4.2 \mathrm{~mm}$										
Light source ${ }^{\text {1) }}$; light type;	LED; red, blue, green;										
Wavelength (nm)	640, 525, 470										
Supply voltage $\mathbf{V}_{\mathbf{S}}$	10... $30 \mathrm{~V} \mathrm{DC}^{2)}$										
Residual ripple ${ }^{3)}$	$<5 \mathrm{~V}_{\text {PP }}$										
Current consumption ${ }^{4}$	$<80 \mathrm{~mA}$										
Switching outputs	PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}}-<2 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$										
	NPN: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}} / \mathrm{LOW}=<2 \mathrm{~V}$										
Output current I_{A} max.	100 mA short-circuit protected										
Response time ${ }^{5}$; switching frequency	$50 \mu \mathrm{~s} ; 10000 / \mathrm{s}$										
Time delay	No timing element										
	Deactivation delay, ... 20 ms										
Teach-in input ET	PNP: Teach > 10 V ... $<\mathrm{V}_{\text {S }}$										
	Run 0 V or unswitched										
	NPN: Teach OV										
	Run V_{S} or unswitched										
Retention time	25 ms non-volatile memory										
Connection type	Plug 5-pin, M12										
VDE protection class ${ }^{6}$	回										
Enclosure rating	IP 67										
Circuit protection ${ }^{7}$	A, B, C										
Ambient temperature T_{A}	Operation $-10 \ldots+55^{\circ} \mathrm{C}$										
	Storage -25 ... $775^{\circ} \mathrm{C}$										
Shock load	To IEC 68										
Weight	Approx. 400 g										
Housing	Cast zinc										
${ }^{1)}$ Average service life $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 2) Limit values	3) May not exceed or fall short of V_{S} tolerances 4) Without load	5) Signal 6) Refere	transit tim nce volta	me with r ge 50	resistive lo DC		$\text { 7) } \begin{aligned} & \mathrm{A}=\mathrm{V}_{\mathrm{S}} \\ & \text { pr } \\ & \mathrm{B}=0 \\ & \mathrm{C}=\mathrm{Int} \end{aligned}$	V_{S} connect protected Outputs sh interferenc	tions reve hort-circuit ce pulse	verse-pola uit protect suppress	larity cted ssion

Scanning distance
1 Scanning distance 10 mm 2 Scanning distance 20 mm 3 Scanning distance 40 mm

Order information

Preferred type*)	Order no.
KT 5W-2P 1116	1018044
KT 5W-2P 1126	1018587
KT 5W-2P 1216	1018586
KT 5W-2P 1316	1018961
KT 5W-2N 1116	1018045
KT 5W-2N 1216	1019022
KT 5W-2N 1316	1022678

[^2]

Contrast scanner with dynamic Teach-in

The KT 5G-2P/N___3 provides a high degree of user-friendly operation and detection reliability. This is the result of the dynamic Teach-in procedure in connection with the automatic light transmitter selection.

You can set the optimum switching threshold without stopping the machine, either using the push button on the equipment or an external impulse via the control wire. The equipment selects the light source between the red, blue and green transmission LED automatically, which achieves the respectively best contrast and consequently the highest possible detection reliability.

e.g. packaging machines and fill lines, these features contribute to economical system operation because they are interruptionfree. The same applies to highly flexible production processes where it is necessary to adapt contrast scanners fast and inexpensively.

Scanning distance 10/20 mm

Contrast scanners

Dynamic Teach-in

- Automatic light transmission selector, red, blue and green
- Teach-in: button on unit or via control cable
L/D adjustable on unit or via control cable
Switching frequency 10 000/s

(\in (IL) 回

See chapter Accessories
Cables and connectors
Mounting systems
Lens

Technical data	KT 5W-2	P1113	P1123	P1213	N1113	N1213					
Scanning distance	$10 \pm 3 \mathrm{~mm}$										
from front edge of lens	$20 \pm 3 \mathrm{~mm}$										
Light spot dimensions	$1.2 \times 4.2 \mathrm{~mm}$										
	$1.5 \times 5.5 \mathrm{~mm}$										
Light source ${ }^{\text {1); }}$ light type;	LED; red, blue, green;										
Wavelength (nm)	640, 525, 470										
Supply voltage $\mathbf{V}_{\mathbf{s}}$	10... $30 \mathrm{~V} \mathrm{DC}^{2)}$										
Residual ripple ${ }^{3)}$	$<5 \mathrm{~V}_{\mathrm{PP}}$										
Current consumption ${ }^{4}$	$<80 \mathrm{~mA}$										
Switching outputs	PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}}-<2 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$										
	NPN: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}} / \mathrm{LOW}=<2 \mathrm{~V}$										
Output current I ${ }_{\text {A }}$ max.	100 mA short-circuit protected										
Switching frequency	To 10000/s										
Response time ${ }^{5}$; switching frequency ${ }^{6}$)	$50 \mu \mathrm{~s} ; 10000 / \mathrm{s}$										
Time delay	No timing element										
	Deactivation delay, ... 20 ms										
Teach-in input ET	PNP: Teach $>10 \mathrm{~V}$... $<\mathrm{V}_{\text {S }}$										
	Run 0 V or unswitched										
	NPN: Teach 0 V										
	Run V_{S} or unswitched										
Retention time	25 ms non-volatile memory										
L/D input, light-/dark-switching	PNP: dark $=>10 \mathrm{~V} . . .<\mathrm{V}_{\mathrm{S}}$										
	light $=0 \mathrm{~V}$ or unswitched										
	NPN: dark $=0 \mathrm{~V}$										
	light $=\mathrm{V}_{\mathrm{S}}$ or unswitched										
Connection type	Plug M12, 5-pin										
VDE protection class ${ }^{7}$)	回										
Enclosure rating	IP 67										
Circuit protection ${ }^{8}$	A, B, C										
Ambient temperature T_{A}	Operation $-10 \ldots+55^{\circ} \mathrm{C}$										
	Storage -25 ... $77{ }^{\circ} \mathrm{C}$										
Shock load	To IEC 68										
Weight	Approx. 400 g										
Housing	Cast zinc										
1) Average service life $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ 2) Limit values	3) May not exceed or fall short of V_{S} tolerances 4) Without load	5) Signal 6) With lig 7) Refer	transit tim ght/dark nce volta	me with r ratio 1:1 age 50 V	resistive lo DC		$\begin{array}{r} A=V \\ p \\ B=0 \\ C=I r \end{array}$	V_{s} conne protected Outputs s interferen	ctions reve short-circut ce pulse	erse-pola uit protec suppres	larity cted ssion

Scanning distance 10 mm

Contrast scanners
Statistic Teach-in on mark and background via Teach-in button on unit

- Rotatable M12, 4-pin connector

Automatic switching threshold adjustment for detection of extremely shiny objects
■ Switching frequency 10,000/s
Two light emission sides
Automatic light source selection red or green

See chapter Accessories
Cables and connectors
Mounting systems
Lens

Dimensional drawing
All types

Adjustments possible All types

1 Lens (light transmission), can be replaced by item 3 2 M5 mounting holes, 5.5 mm deep
3 Blind srew, can be replaced by item 1

Connection type

All types

4-pin, M12 x 1

3. Place the light spot on the background, and trigger
*) Further types on request
the second Teach-in procedure.
The KT 5 RG-2 selects transmission light from among red or green automatically.

Confirmation:

After the first Teach-in procedure, the red transmitter light blinks, and the status indicator blinks slowly and signals that a second Teach-in procedure must be triggered.
LED and status indicator blink rapidly = contrast insufficient. LED and status indicator do not blink $=$ Teach-in procedure completed.

[^3]

Contrast scanner with dynamic contrast detection

Contrast scanners with green light LED can distinguish up to 30 gray value levels. Color deviations due to printing can result in different gray values within a processing procedure.

In this model, the switching threshold is set dynamically according to the existing contrast. This means that a switching signal is activated at each contrast that the KT 5 detects.

Manual adjustment or a Teach-in procedure is not required with dynamic contrast detection. Of course, this equipment also has intensive green light for resolving at least 30 gray levels.

light (light-switching):
fine (insufficient contras

fine (insufficient contrast)
or coarse (large contrast)
dark (dark-switching): fine (insufficient contrast) or coarse (large contrast)


```
The example shows the mode of operation in the "coarse" setting with dark-switching.
```

- The control panel is locked when the switch is set to LINE.

Then the F/C and /L/D settings are only accepted via the control wire.

Scanning distance 10/20/40 mm

Contrast scanners

Green light

Dynamic contrast determination
Fine/coarse adjustment
Light/dark finely adjustable
Switching frequency $10000 / \mathrm{s}$

Dimensional drawing

(\in (UL) \square

Connection type
All types

5-pin, M12

Technical data

Scanning distance
from front edge of lens
Light spot dimensions
L
Light spot position
Light source ${ }^{1}$; light type;
Wavelength (nm) 520

Supply voltage $\mathbf{V}_{\mathbf{S}}$	10
Residual ripple $^{3)}$	<8

Current consumption ${ }^{4)}<8$
Switching outputs P
Output current I_{A} max.
Response time ${ }^{5)}$; switching frequency ${ }^{6)}$

Time delay
Fine/coarse input F/C

L/D input, light-/dark-switching

Connection type
VDE protection class ${ }^{7}$
Enclosure rating

Circuit protection ${ }^{8)}$
Ambient temperature T_{A}

Shock load

Weight

Housing

1) Average service life $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2) Limit values

KT 5G-2 P1114 P1214 P1314 P2114 |N1114 N1214 N1314
$10 \pm 3 \mathrm{~mm}$
$20 \pm 3 \mathrm{~mm}$
$40 \pm 3 \mathrm{~mm}$
$1.2 \times 4.2 \mathrm{~mm}$
$1.5 \times 5.5 \mathrm{~mm}$
$1.1 \times 4.2 \mathrm{~mm}$
Longitudinal
Transverse
ED; green light;
520
10 ... 30 V DC $^{2)}$
$<5 \mathrm{~V}_{\mathrm{PP}}$
$<80 \mathrm{~mA}$
PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}}-<2 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$
NPN: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}} /$ LOW $=<2 \mathrm{~V}$
100 mA short-circuit protected
$50 \mu \mathrm{~s}$; 10000/s
No timing element
PNP: fine 0 V or unswitched coarse $>10 \mathrm{~V} \ldots<\mathrm{V}_{\mathrm{S}}$
NPN: fine V_{S} or unswitched coarse 0 V
PNP: dark $=>10 \mathrm{~V} . . .<\mathrm{V}_{\mathrm{S}}$ light $=0 \mathrm{~V}$ or unswitched
NPN: dark $=0 \mathrm{~V}$ light $=V_{s}$ or unswitched
Plug M12, 5-pin
回
IP 67
A, B, C
Operation -10 ... $+55^{\circ} \mathrm{C}$
Storage $-25 \ldots+75^{\circ} \mathrm{C}$
To IEC 68
Approx. 400 g
Cast zinc
3) May not exceed or fall short of V_{S} tolerances
4) Without load
5) Signal transit time with resistive load
6) With light/dark ratio 1:1
7) Do not bend below $0{ }^{\circ} \mathrm{C}$
8) Reference voltage 50 VDC
9) $\mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected
$B=$ Outputs short-circuit protected
C $=$ Interference pulse suppression

*) Further types on request

Contrast scanner with manual switching threshold adjustment

Industrial packaging processes are automated for the most part. Sensors are required for this, which can detect print marks on different films, cardboard packaging and wrapping materials quickly and reliably.

The KT 5G-2P/N_ _ _ 1 can resolve over 30 different contrast levels. This is the basic model of the KT 5 series. The gray value differentiation, switching sequence of 10 kHz and scanning ranges of optionally 10,20 and 40 mm cover a wide range of applications in contrast detection. The switching threshold is adjusted manually with support from the status indicator as an adjustment aid. An optional release delay, which increase the impulse duration, optimizes detection reliability.

- The switching threshold is set manually in the middle between the background and the mark.

Notes
The material speed must be zero (machine is idle).

- Turn the threshold adjustment knob until the status indicator just lights.
- Switching threshold setting at bright-switching analogue.

Scanning distance 10/20/40 mm

Contrast scanners

Green light

Manual switching threshold adjustment

- Adjustment switch

Optional time delay
Switching frequency 10 000/s

Dimensional drawing

1	
2	
3	
4	
5	
6	
7	
0	
9	8
9	
9	

ens (light transmission), can be replaced by item
Adjustments possible
All types

Connection type
All types

4-pin, M12

Scanning distance
1 Scanning distance 10 mm
2 Scanning distance 20 mm
3 Scanning distance 40 mm

Order information

Preferred type*)	Order no.
KT 5G-2P 1111	1015993
KT 5G-2P 1121	1015997
KT 5G-2P 1151	1016195
KT 5G-2P 1211	1015999
KT 5G-2P 1221	1016001
KT 5G-2P 1311	1016003
KT 5G-2P 1321	1016005
KT 5G-2P 2111	1016008

*) Further types on request

Scanning distance 10/20/40 mm

Contrast scanners
Green light
Manual switching threshold adjustment
\square Adjustment switch
Optional time delay
Switching frequency 10 000/s

Dimensional drawing

ens (light transmission), can be replaced by item

Connection type
All types

4-pin, M12

Technical data	KT 5G-2	N1111	N1151	N1211	N1311						
Scanning distance	$10 \pm 3 \mathrm{~mm}$										
from front edge of lens	$20 \pm 3 \mathrm{~mm}$										
	$40 \pm 3 \mathrm{~mm}$										
Light spot dimension	$1.2 \times 4.2 \mathrm{~mm}$										
	$1.5 \times 5.5 \mathrm{~mm}$										
	$1.1 \times 4.2 \mathrm{~mm}$										
Light spot position	Longitudinal										
Light source ${ }^{\text {1); }}$, light type;	LED; green light;										
Wavelength (nm)	520										
Supply voltage $\mathbf{V}_{\mathbf{S}}$	$10 . . .30 V^{\text {D }}{ }^{2}$										
Residual ripple ${ }^{3)}$	$<5 \mathrm{~V}_{\text {PP }}$										
Current consumption ${ }^{4)}$	$<80 \mathrm{~mA}$										
Switching outputs	Light-/dark-switching, selectable										
	NPN: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}} / \mathrm{LOW}=<2 \mathrm{~V}$										
Output current I_{A} max.	100 mA										
Response time ${ }^{5}$; switching frequency ${ }^{6}$)	$50 \mu \mathrm{~s} ; 10000 / \mathrm{s}$										
Time delay	No timing element										
Analogue output Q_{A}	0.3 ... 10 mA										
Switching threshold	adjustable (standard type)										
Connection type	Plug 4-pin, M12										
VDE protection class ${ }^{7}$)	回										
Enclosure rating	IP 67										
Circuit protection ${ }^{8}$	A, B, C										
Ambient temperature T_{A}	Operation -10 ... $+55^{\circ} \mathrm{C}$										
	Storage -25 ... $+75^{\circ} \mathrm{C}$										
Shock load	To IEC 68										
Weight	Approx. 400 g										
Housing	Cast zinc										
1) Average service life $100,000 \mathrm{~h}$ at $T_{A}=+25^{\circ} \mathrm{C}$ 2) Limit values	${ }^{3)}$ May not exceed or fall short of V_{S} tolerances 4) Without load	$\begin{aligned} & \text { 5) Signal } \\ & \text { 6) With li } \\ & \text { 7) Refere } \end{aligned}$	I transit light/dark ence volt	time with ratio 1: tage 50	resistive 1 V DC	load	8)		V_{S} conn protecte Outputs Interfere	ections r d short-cir nce puls	reverse-polarity ircuit protected se suppression

Scanning distance
1 Scanning distance 10 mm
2 Scanning distance 20 mm
3 Scanning distance 40 mm

Order information

Scanning distance 150 mm

Contrast scanners

Laser class 2

- Adjustment switch Long scanning distance
- Accurate recording of very small marks
Switching frequency 10 000/s

Dimensional drawing
All types

Connection type
All types

4-pin, M12

Order information

Preferred type*)	Order no.
KT 5L-P 3611	1011536
KT 5L-N 3611	1013266

[^4]| $\stackrel{[}{4}$ | Scanning distance up to 15 mm |
| :---: | :---: |
| Proximity mode | |
| | Scanning range up to 60 mm |
| Through-beam mode | |

Green light

Switching threshold adjustable or static Teach-in to mark and background via control cable or control panel on unit or dynamic Teach-in \square Insensitive to ambient light

$C \in$ (LL) 回

Dimensional drawing

All types

1. M5 mounting holes, 5.5 mm deepFibre-optic adapter (M12 x 1 internal thread)
3 4-pin, M12 x 1 plug (rotatable through 90°)
4 Function signal indicator (yellow)
5 Operating mode selector switch
(Light-switching

- Dark-switching

6 Switching threshold adjustment
Adjustment indicators (green)
8 Pre-selection switch
9 Teach-in button
10 L/D pre-selection switch

Connection type		
KTL 5G-2P11	KTL 5W-2P16	KTL 5W-2P23
KTL 5G-2N11		KTL 5W-2N13
KTL 5G-2P51		
KTL 5G-2N51		
4-pin, M12	5-pin, M12x1	5-pin, M12x1

Dynamic, convenient, excellent: Contrast Scanners with dynamic Teach-in

The new KT 3 contrast scanner is small in price and design, but big in detecting contrasts in standard applications. With scanning ranges to 12.5 mm and switching sequences up to $10,000 / \mathrm{s}$, the mark sensor is predestined for use in packaging machines, for example.

Features such as integrated tuning of switching thresholds for high-gloss objects and dynamic Teach-in make the KT 3 easy to both commission and use. Depending on the existing contrast, the KT 3 selects the optimum transmission colour (red, green or blue). And thanks to the miniature design, the KT 3 is especially well suited for cramped
 quarters.

Contrasts do not need expensive technology, but instead simply the KT 3.

or

The material speed during the Teach-in procedure must be slower than $10 \mathrm{~m} /$ minute when there are smaller marks.
Only teach-in one mark if possible.

- If the Teach-in procedure was unsuccessful, the output switches at approx. 3.5/s and the yellow LED display blinks. The reception signal was too weak, too strong (possibly due to shiny reflectance) or the contrast difference was too slight.

| $\\| \longrightarrow$ | Scanning distance |
| :--- | :--- | :--- |
| 12.5 mm | |

Light source green or red, green, blue

- Integrated switching threshold adjustment for detection of extremely shiny objects
Dynamic Teach-in via control panel or control wire while machine is running
Switching frequency 10,000/s

c \in

Connection type
All types

4-pin, M12

Ready, steady, go: Contrast Scanners with static Teach-in on mark and background

The proven static 2-point Teach-in is also available in the KT 3. You only need to teach on the mark and the background, and away you go. The sensor selects the optimum transmission colour (for KT 3 W) and matches the switching threshold according to the difference between mark and background. High-gloss foils are no problem, thanks to automatic gloss adjustment. The 10 kHz technology completes the superb functionality of this little wonder.

The laser version of the KT 3 is available for detecting small marks at great scanning distances. It features a small light spot, irrespective of changes in scanning distance. This
 leads to high repeat accuracy.

Thanks to its high switching frequency, the KT 3 laser ensures economical operation of your machine.

』 After the first stage of the Teach-in (Ionger than 1 s), the emitted light and the status indicator flash slowly which indicates that the second stage of Teach-in must be initiated.

- LED and signal strength indicator not flashing = Teach-in successfully completed.

Light-/dark-switching not required: equipment switches for the material to be scanned, which was under the light spot at the first Teach-in procedure (mark or background).
The material speed must be zero during Teach-in (machine is idle).

| $\\|$ | Scanning distance
 12.5 mm |
| :--- | :--- | :--- |
| $\\|$ | |
| Contrast scanners | |

Light source green or red, green, blue
Integrated switching threshold adjustment for detection of extremely shiny objects
Static 2-point Teach-in to mark and background via control cable or control panel on unit
Switching frequency 10,000/s

($\in \square$

See chapter Accessories
Cables and connectors
Mounting systems

Dimensional drawing
All types

Connection type
All types

Scanning distance

Scanning distance 12.5 mm

Order information Preferred type *

Order no.
1019446
1019445
1019338
1022933
1019337
Further types on reques

Light source laser
Automatic switching threshold adjustment for detection of extremely shiny objects
Static Teach-in to mark and background via control cable and control panel
Switching frequency 1,500/s
M12 plug

(\in CDRH \triangle

See chapter Accessories
Cables and connectors
Mounting systems

Dimensional drawing
All types

Adjustments possible

1 Axis of the sender optics

Connection type
All types

Contrast scanner with a good price/performance ratio

The KT 2 contrast scanner can be used in many industrial sectors in which print marks can control work processes. Dependent on the gray value difference, you can select between sensors with red or green transmission light. The manual switching threshold adjustment provides smooth operation and a high degree of detection reliability. Setting and resetting from dark to light marks and back is easy and simple via control wire.

Contrast scanners of the KT 2 series with compact metal housing are an inexpensive alternative for standard applications with only slight performance requirements for contrast detection due to simple colouring of the print marks.

In addition to a 5-pin M12 standard plug, the KT 2 contrast scanner can be attached using a dovetail and additional mounting holes for
 convenient and flexible electric and mechanic integration in many different environments.

$\left(\epsilon \Theta^{\circledR} \square\right.$

5-pin, M12

Scanning distance

Scanning distance SD, adjustable
Object shown with 90\% remission (based on standard white acc. to DIN 5033)

Order information Preferred type *) Order no. KT 2R-2B 3711 KT 2G-2B 3711 KT 2R-2B 3721

1016112
1016115
1016114

*) Further types on request

$\underline{\square}$	Scanning distance
1 -	23.5 mm

Light source white: for a wide range of application
Easy mounting thanks to accessories
LED indicator: Switching output active and operation reserve
Light or dark switching

c ϵ

Adjustments possible
All types

Connection type	
KT1M-P1	
KT1M-P2	
KT1M-N1	
KT1M-N2	

3-pin, M12

Threshold setting

Threshold setting

1. Position sensor on background.

Start at 0° (light source off) and turn until LED flashes or until 270°.
2. Position sensor on mark.

Turn back until LED off.
3. Turn between point 1 and 2 .

Order information	
Type	Order no.
KT1M-P1	1027306
KT1M-P2	1027307
KT1M-N1	1027304
KT1M-N2	1027305

General

SICK CS Series color sensors were specially developed for online detection of colors in industrial procedures and processes. They are ideal for effecting rapid, non-contact identification and for sorting and monitoring of solid objects using incident light, or for monitoring of transparent objects using transmitted light. During the Teach-in process, reference colors are simply stored in memory. The sensors are compact, immune to interference, unaffected by external light influence and require no maintenance. The units are available in several options.

Applications

The CS color sensors are compact multi-functional measurement systems, which are suitable for automating all industrial procedures in which the color of an object or a color mark represents the criteria for detection and segmentation. Some examples of application for this are:

- Assigning and monitoring of packaging, labelling and content,
- Detection of tax revenue stamps,
- Detecting random color markings (printed marks, logos, defect marks, etc.),
- Detection of components (e.g. mating parts),
- Cable/wire core detection,
- Sorting of auxiliary materials, products, components,
- Control of containers, pallets and material boxes,
- Sorting of cases of drinks, detection of boxes of miscellaneous items,
- Monitoring of coating processes,
- Monitoring of the presence of items and position,
- Monitoring of printing,
- Monitoring of filling processes,
- Monitoring of colored envelopes and wrappings
- and much more.

Selection/overview

CS 8: Can store up to four reference colors, different scanning distances.
CS 8: For applications in which only one color needs to be detected.
CSL 1: In cases where space is particularly limited, CS 1 is available as an option for conducting the light.

CSM: Compact unit and simple to operate.

Setup and method of operation

The CS color sensors work on the principle of utilising three active ranges. In so doing, the object under inspection is illuminated by a light source having a differing spectral composition. The reflected beam is received, amplified, digitalised and assessed, then specially defined by means of an integrated microprocessor. The magnitudes of the signals thus obtained for the spectral ranges of red, green and blue then contain the total information on color, hue, saturation and brightness. The measured values are continuously compared against stored reference values. If the measured values match with the stored reference values, the condition of switching output changes.

Switching outputs

The sensors have digital switching outputs of the type PNP or NPN. These are activated as soon as a color value reading matches with a stored reference value. Additionally, a 20 ms off time delay to the signal may be selected via the programme selector switch, if required.

Blanking input

Sometimes it is necessary to take readings only if the object under investigation is precisely in the field of scan of the sensor. For this, a dynamic trigger input facility is provided, via which the scan time can be controlled with an input pulse. Interrogation then only takes place if the input is inactive or is unswitched. It is recommended to synchronise the operation, especially for high speed production sequences, objects flowing close to one another in sequential progression, cylindrical objects creating a lens effect, reflection on boundary surfaces and edges or structured and irregular color surfaces.

Input of external Teach ET

This input is used if a reference color is to be stored for a color channel (switching output) Q1 via an external input signal. By prior verification it must be ensured that the sensor positively detects the object or the color of the marking.

Check the conditions of use to ensure that the permitted operating conditions during installation, are maintained whilst in operation

- Install the sensor in a position at which the object to be examined generates the least amount of movement laterally or vertically (the higher the required color resolution, the greater the requirement for accuracy of guidance). The quoted scanning distance and scanning distance tolerance must be maintained.
- In the case of color sensors generating a square shaped spot of light, the position of the spot of light and the direction of movement of the item under investigation are important. The best reproducibility is therefore achieved when the items being scanned pass through the light spot transversely.

CS8: detect, check and sort colours

light spot is positioned on the colour to be detected, push button - ready. If required, the colour tolerance can easily be adjusted. Using the CS8-4 each channel is selected for a corresponding colour. The high performance color sensors from SICK do not require any complex set-up procedures.

The default setting is selected in such a way that it can handle the majority of applications. However, if especially high speed or high colour resolution is required, you can select from three modes (speed, resolution and combi). The sensor is then set to the different conditions. The CS8 can be installed flexibly with its robust metal housing, selectable light exits and rotatable M12 plug. Thanks to its electrical and mechanical compatibility and a common teach-in procedure, you can switch from the old generation CS1 to CS8-1 and CS3 to CS8-4 without problems.

The reference channel technology guarantees working during the whole life cycle - even in alternating temperatures.

4Print mark control with the CS8:
each channel
corresponds to one coloured mark.

- The same shape, different contents: the CS8 assists in sorting if colour remains the only distinguishing feature.
- The CS8 detects the presence or absence of

© The CS8 checks prior to packaging, whether the
toothpaste tubes have been aligned correctly.

Δ The chocolate is packed, but is it the right one?
The CS8 sorts according to the colour of the different packages.

Scanning distance $12.5 \mathrm{~mm} / 60 \mathrm{~mm}$

Color sensors

Response time up to $85 \mu \mathrm{~s}$
High colour resolution
Quality of colour indicator via bar display
Very precise light spot
High geometrical resolution
Metal housing with 2 light exits (changeable)

(\in 回

See chapter Accessories
Cables and connectors

Dimensional drawing

Adjustments possible
All Types

1 Lens (light transmission)
2 M5 mounting holes, 5.5 mm deep
3 See dimensional drawing of lens
4 Blind screw can be replaced by lens 1
5 5-pin, M12 x 1 plug (rotatable through 90°) or 8 -pin, M12 $\times 1$ plug (rotatable through 90°)
6 Function signal indicators (yellow)
7 Bar display (green), Power on 气्= left LED
8 Teach-in button/"+" and "-" button

5-pin, M12
8-pin, M12

Blanking input AT
Blanked
Free running

3) May not exceed or fall short of V_{S} tolerances

Order information	
Type	Order no.
CS81-P1112	1028224
CS81-P3612	1028225
CS84-P1112	1028226
CS84-P3612	1028227
CS81-N1112	1028228
CS81-N3612	1028229
CS84-N1112	1028230
CS84-N3612	1028231

Color sensors for detection of a single color and high speed production sequences

U Upon successful Teach process the "Q/ok" indicator (yellow LED) illuminates.

If the " O / ok " indicator does not illuminate, then the intensity is too low. Increase the color tolerance of the selector switch. If the indicator flashes the intensity is too high (reflection/gloss). Reduce the color tolerance of the selector switch.
After resetting the programme selector switch to "Run" or to "Run Delay" the sensor is ready to use.

$1<8$	Scanning distance 0 ... 9 mm
Color sensors scanning principle	
	Scanning distance $0 \text {... } 20 \text { mm }$
Color sensors through-beam principle	

Dimensional drawing

Fibre optic cable connection
Fibre optic cable for high temperatures
Static Teach-in for objects via the control wire or the operating console
Adjustable color selectivity
Blanking input

Adjustments possible

Connection type

M12, 5-pin

Technical data

CSL 1 -

P 11	N 11

Scanning distance
Scanning range

Light source ${ }^{1}$; light type
$0 . . .9 \mathrm{~mm}$

Supply voltage $\mathbf{V}_{\mathbf{S}}$
Ripple ${ }^{\text {Cur }}$
Switching outputs

	N
Output current I_{A} max.	10
Response time ${ }^{5}$; ; Switching frequency ${ }^{6}$) <70	
Time delay	20

Time delay	20 m
Teach-in-Eingang ET	PNP

	Run <2 V or unswitched	
	NPN:	Teach 0 V ... 12 V
	Run V_{S} or unswitched	
Pulse duration	ET $>0.5 \mathrm{~ms}$	

Blanking input AT

Scanning distance

1 Fibre-optic cable LBST 32900
2 Fibre-optic cable 32900
3 Fibre-optic cable OCSL

Order information

Type	Order no.
CSL 1-P 11	1016292
CSL 1-N 11	1016293

Color sensors for the detection of a single color in restricted space conditions

The choice of color tolerance is determined during the Teach procedure. The CSM offers the choice between "medium", "fine" and "coarse" settings. Upon pressing the Teach-in button, the transmission light changes from "green" to "blue" and then to "red". Depending upon which color of the Teach process is triggered, the corresponding color tolerance is automatically set. The simplicity of this procedure characterises the CSM.

Even its switching frequency can be impressive: with 1.5 kHz it compares well to its "larger rivals".

or

Upon successfully completing the Teach process, the Receive indicator illuminates.

If the Receive indicator and the red transmitting light flash, the Teach process was unsuccessful. Change the color tolerance.

- During Teach-in using the external control wire, the last color tolerance set by means of the operating console (manual operation) or the factory setting at "medium" is chosen.(i.e., setting of the color tolerance is only possible at the operating console.)
- Upon pressing the Teach-in button, the green transmitting led illuminates for 2 seconds. If in this time the Teach-in button is pressed, the Teach-in process is initiated and the "medium" color tolerance is selected. In the event that the button is not pressed the green light of the transmitting lamp will turn off and the blue light of the transmitting lamp will illuminate for approx. 1 second. If during this time the Teach-in button is pressed, the Teach process will be initiated with the selected color tolerance set to "fine". If the Teach-in button is not pressed, the blue transmitting light will turn off and the red transmitting light will illuminate for 1 sec . In this time, the Teach-in process will be initiated with the selected color tolerance set to "coarse".

$1 \Rightarrow 8$	$\begin{aligned} & \text { Scanning distance } \\ & 12.5 \mathrm{~mm} \end{aligned}$
Color sensors scanning principle	
\square Color tolerance adjustable	
Static Teach-in for objects via means of the control wire or operating console	
\square Switching frequency 1500/s	
- Plug	M12

Dimensional drawing

c

See chapter Accessories
Cables and connectors

4-pin, M12

General

SICK Luminescence scanners detect fluorescent materials or markings. They convert an optical signal into a digital electrical signal. High-contrast markings, which stand out clearly against the background, are reliably detected by photo-electrical sensors. Irrespective of pattern, colour or surface texture, luminescence scanners detect fluorescent markings on any carrier material.

Applications

Features

```
\square Long-life UV light 385 nm or 370 nm
\square No lamp replacement
\square Status and readiness indicator
\squareChoice of scanning ranges through interchangeable objective lenses
\square Time delay adjustable (3, 5, 10, 20 ms, LUT3-8 and LUT3-9)
\square Insensitive to surface and mirror reflections
\square PNP and NPN output shortcircuit proof up to 100 mA
\square Two-position M12 plug, 5-pin (LUT3)
~ Robust housing IP 67
\square Analogue output (LUT3-8 and LUT3-9)
Supply voltage from 12 ... 30 V DC, (LUT3) and 24 V DC (LUT2).
Both units offer reverse polarity protection.
High switching frequency
Short response time
Fibre-optic cable connection (LUT3-8 and LUT3-9)
Static Teach-in for the marking and/or operating field, or control wire for LUT2
```


Luminophors

A variety of fluorescent marking agents are commercially available, some of which are ready for use. These substances owe their properties of fluorescence to added luminophors. These are small particles converting ultraviolet light of different wavelengths and intensity into visible light. Luminophors can be added to almost any substance. Current fluorescent marking agents include:

- Daylight paints
- Chalks and crayons
- Labels
- Fluorescent inks (including invisible ones)
- Oils and greases

Felt-tip pens
A list of further fluorescent marking agents including sources of supply can be ordered directly from SICK: "Fluorescent Marking Agents".

Function Principle

Installation

LUT3-6 and 3-8 Luminescence scanners transmit modulated UV light with a wavelength of 385 nm . LUT3-9 and LUT 2 transmit modulated UV light with a wavelength of 370 nm . This activates fluorescent material (tracers), which transmit long-wave light back to the visible wavelength range (approx. $420 \ldots 750 \mathrm{~nm}$). The LUT detects and evaluates this light, which has the same modulation frequency as the transmitted UV light. Contrary to other proximity switches, the luminescence scanner does not receive its own transmitted light, but instead light converted by fluorescent marking. The optic signal is processed electronically and is available at the output as a digital switching signal. The equipment sensitivity is set using a potentiometer to adjust it optimally to the fluorescent marking.
The LUT3-9 can be used in all situations when a high degree of system sensitivity is required. Contrary to the LUT3-6 and LUT3-8, the LUT3-9 works using a UV diode in a wavelength of 370 nm . This improves stimulation of the pigments and provides them with better luminosity. Thanks to the higher degree of system sensitivity, greater scanning distances are also possible using the LUT3-9. With applications having a low level of fluorescence, LUT2 should be installed, as the switching threshold can be changed on this unit.

Function principle of the Luminescence Scanner

Luminescence scanners should be installed in a location where the position of the material to be scanned involves minimal movement. The light spot, which is parallel with the axis of the scanner, is focussed at the scanned object. The fluorescent markings must be arranged parallel with the light spot to ensure most accurate positioning.

Adjustments

LUT3

The green LED lights when power is supplied: Power On. The yellow LED lights when the LUT3 detects luminous scanned objects. Then the output switches.
When the background has no base luminescence, turn the sensitivity control to the right (ex works setting). The luminescence scanner then reacts to the luminescent markings. Equipment with optical filters in the reception channel is available for suppressing base luminescence. For example, the RG 610 filter filters out blue base luminescence, and then the receiver only reacts to light starting from 610 nm . Consequently, the marking must contain pigments that light up in the wavelength greater than 610 nm .
If the base luminescence is weak in the background, the following setting is recommended:
\square Set sensitivity to maximum.

- Align background with slight base luminescence with the detection field of the scanner.

Turn the sensitivity control to the left until the LED (yellow) just switches off. Note the position of the knob.

- Align luminescent marking with the detection field of the scanner.

Turn the sensitivity control to the left until the LED just switches off. Note the position of the knob.

Reset the sensitivity control approximately in the middle of the two noted positions.
LUT2
Setting the sensitivity on the LUT2 is described in the Technical Data on Page 1157.

,	S
1-11	50 ... 150 mm

Stepless control of switching threshold via film keypad

- Switching frequency 600/s to 6000/s
Large scanning distances

Dimensional drawing	
LUT1B-11325	
LUT1B-12205*)	

LUT1B-31225	
LUT1B-41225	*) lens planar to surface

Connection type
All types

5-pin, M 12

Switching threshold

Stepless control via film keypad: Maximum (+) to Minimum (-).

Order informat	
Type	Order no.
LUT1B-41225	1024125
LUT1B-41235	1024126
LUT1B-11325	1024127
LUT1U-11331	1024128
LUT1B-31325	1027593
LUT1B-12205	1027497

Scanning distance 10 ... 50 mm

Luminescence scanners
UV semi-conductor light source
No lamp replacement
Scanning distance selectable by using interchangeable lenses

(\in

See chapter Accessories
Connectors
Mounting systems
Lenses

Dimensional drawing

2	M5 threaded mounting hole, 5.5 mm deep
	Light spot direction
3	Centre of optical axis
4	See dimensional drawing for lens
5	M12 plug (rotatable)
6	Operating indicator
7	Not used
8	Sensitivity adjustment
9	Output indicator

Connection type
All types

4-pin, M12

Technical data	LUT3-	610	620	650						
Scannig distance ${ }^{1)} /$ light spot sizes	$10 \mathrm{~mm} / \varnothing 2 \times 6 \mathrm{~mm}$									
	$20 \mathrm{~mm} / \varnothing 3 \times 9 \mathrm{~mm}$									
	$50 \mathrm{~mm} / \varnothing 5 \times 15 \mathrm{~mm}$									
Light spot direction	Longitudinal									
Light source ${ }^{2)}$, light type	UV light source									
Wavelength	385 nm									
Supply voltage $\mathbf{V}_{\mathbf{S}}$	$12 . . .30 \vee \mathrm{DC}^{3}$									
Ripple ${ }^{4}$	max. 2 V									
Current consumption5)	60 mA									
Switching outputs	Light-switching									
	PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}}-<3 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$									
	NPN: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}} / \mathrm{LOW}=<2 \mathrm{~V}$									
Output current I_{A} max.	100 mA									
Response time ${ }^{6)}$	0.3 ms									
Switching frequency ${ }^{7}$)	1.5 kHz									
Connection type	Plug									
VDE protection class ${ }^{\text {8 }}$	回									
Circuit protection ${ }^{\text {) }}$	A, B, C									
Enclosure rating	IP 67									
Ambient temperature T_{A}	Operation $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$									
	Storage $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$									
Shock load	To IEC 68									
Weight	400 g									
Housing material	Die-cast metal	5) Without load 6) Signal transit time with resistive load 7) With light/dark ratio $1: 1$ 8) Reference voltage 50 VDC								
1) From front edge of lens 2) Average service life $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	3) Limit values 4) May not exceed or fall short of V_{s} tolerances	5) Without load 6) Signal transit time with resistive load 7) With light/dark ratio 1:1 8) Reference voltage 50 VDC				9) $\mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected $B=$ Outputs Q_{p} und Q_{N} short-circuit protected C = Interference pulse suppression				

Luminescence scanners

UV semi-conductor light source

No lamp replacement
Scanning distance selectable by using interchangeable lenses

- Fibre-optic cable connection

Analogue output
Additional optical filter

($\in \square$

See chapter Accessories
Connectors
Mounting systems
Lenses
Fibre-optic cable
Luminescence scale

Dimensional drawing

Connection type
All types

5-pin, M12

Scanning distance

	Scanning distance 10 mm
2	Scanning distance 20 mm
3	Scanning distance 50 mm
4	Scanning distance 90 mm

Order Information

Type	Order no.
LUT3-810	1 012867
LUT3-820	1 012868
LUT3-850	1012869
LUT3-890	1014058
LUT3-851	1012870
LUT3-852	1012871

\\| -	Scanning distance
1 -	10 ... 90 mm

Luminescence scanners
UV semi-conductor light source
No lamp replacement
Scanning distance selectable
by using interchangeable lenses
Fibre-optic cable connection
Analogue output
Additional optical filter

C \in

See chapter Accessories
Connectors
Mounting systems
Lenses
Fibre-optic cable
Luminescence scale

\qquad

Connection type
All types

5-pin, M12

Technical data	LUT3-	910	920	950	990	951	952	953			
$20 \mathrm{~mm} / \varnothing 3 \times 9 \mathrm{~mm}$											
$50 \mathrm{~mm} / \varnothing 5 \times 15 \mathrm{~mm}$											
$90 \mathrm{~mm} / \varnothing 8 \times 20 \mathrm{~mm}$											
Larger scanning distances on request											
Light spot direction	Longitudinal										
Light source ${ }^{2}$, light type	UV light source										
Wavelength	370 nm										
Receiver filter	OG 570										
RG 610											
RG 665											
Supply voltage $\mathbf{V}_{\mathbf{S}}$	$12 . . .30 \mathrm{~V} \mathrm{DC}^{3}$										
Ripple ${ }^{4)}$	max. 2 V										
Current consumption5)	60 mA										
Switching outputs	Light-switching										
PNP: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}}-<3 \mathrm{~V} / \mathrm{LOW}=0 \mathrm{~V}$											
NPN: $\mathrm{HIGH}=\mathrm{V}_{\mathrm{S}} /$ LOW $=<2 \mathrm{~V}$											
Output current I_{A} max.	100 mA										
Response time ${ }^{6}$	0.3 ms										
Switching frequency 7)	1.5 kHz										
Time delay (deactivation delay)	$3 \mathrm{~ms}, 5 \mathrm{~ms}, 10 \mathrm{~ms}, 20 \mathrm{~ms}$, adjustable										
Analogue output Q_{A}	0.5 ... 10 mA										
Connection type	Plug										
VDE protection class ${ }^{8}$)	\square										
Circuit protection ${ }^{9}$	A, B, C										
Enclosure rating	IP 67										
Ambient temperature	Operation $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$										
Storage $\quad-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$											
Shock load	To IEC 68										
Weight	400 g										
Housing material	Die-cast metal										
1) From front edge of lens 2) Average service life $100,000 \mathrm{~h}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	3) Limit values 4) May not exceed or fall short of V_{S} tolerances	5) Without load 6) Signal transit time with resistive load 7) With light/dark ratio 1:1 8) Reference voltage 50 VDC					9) $\mathrm{A}=\mathrm{V}_{\mathrm{S}}$ connections reverse-polarity protected $B=$ Outputs Q_{P} und Q_{N} short-circuit protected C = Interference pulse suppression				

Switching threshold adjustment for low fluorescence

Static Teach-in to mark and/or background via control cable or control panel on unit Switching frequency 500/s and 2000/s

- M12 equipment plug

Dimension illustration

Connection type

LUT2-P1116
LUT2-N1116

4-pin, M12

Sensitivity adjustment

Standard applications are available with default setting of the LUT2, no Teach-in procedure is necessary.
Type

Order no.
1023500
LUT2-N1116
1023501

For low fluorescence of the mark and in the case of background fluorescence the sensitivity is set automatically with Teach-in via control panel or via control wire.

Teach-in via control panel:

1. Place mark in light spot.
2. Press the Teach-in button on the sensor for longer than 1 s .
First Teach-in procedure is triggered.
3. Place the light spot on the background

Second Teach-in procedure is triggered.

Teach-in via control wire:

1. Place mark in light spot.
2. Trigger the first Teach-in procedure via the control wire.
3. Place the light spot on the background, and then trigger the second Teach-in procedure via the control wire.

Confirmation:

LED and status indicator do not blink $=$ Teach-in procedure completed with standard sensitivity (2000/s).
LED and status indicator blink $2 \times$ shortly $=$ Teach-in procedure completed with high sensitivity (500/s).
LED and status indicator blink rapidly $=$ Teach-in procedure not completed.

Preselection: high sensitivity, switching frequency 500/s via control panel.

Teach-in via control panel:

1. Place mark in light spot.
2. Press the Teach-in button on the sensor for longer
than 1 s .
First Teach-in procedure is triggered.
3. Place the light spot on the background, and then trigger the second Teach-in procedure via the control wire.
4. Press the Teach-in button in the next 2 seconds.

Confirmation

LED and status indicator blink $2 x$ shortly $=$ Teach-in procedure completed with high sensitivity (500/s). LED and status indicator blink rapidly $=$ Teach-in procedure not completed.

WF: Fork sensors for a wide range of applications

- Slot widths between

2 and 225 mm ,
slot depths of 40,60 and 95 mm ,

- manual adjustment via userfriendly keyboard or multiplex potentiometers,
- simple and quick adjustment via Teach-in,
- switching output PNP and NPN,
- L/D adjustable via button,
- rugged metal housing with glass optics,
- shortest response time,
- fine resolution.
- Fork sensors on a labelling machine monitoring the label strip to ensure that a label is attached to every package.
- The fork sensor reliably detects double sheets on conveyor belts carrying material
 to guillotine cutters.

Fork width
2 ... 120 mm
Fork sensors
Simple and accurate adjustment via " + " and "-" buttons
\square PNP and NPN switching output
Light/dark switching, adjustable
■ Rugged aluminium housing

See chapter Accessories
Cables and connectors

Dimensional drawing
All types

Adjustments possible
All types

Dimensions

1	Optical axis
2	Mounting holes, $\varnothing 4.2 \mathrm{~mm}$
3	Function indicator (red)
4	Function indicator (yellow), switching output
	"+"/"-" buttons and function button

Dimensions (mm)	\mathbf{A} Fork width	\mathbf{B} Fork depth	C
WF 2	$\mathbf{2}$	$42 / 59 / 95$	14
WF 5	$\mathbf{5}$	$42 / 59 / 95$	14
WF 15	$\mathbf{1 5}$	$42 / 59 / 95$	27
WF 30	$\mathbf{3 0}$	$42 / 59 / 95$	42
WF 50	$\mathbf{5 0}$	$42 / 59 / 95$	40
WF 80	$\mathbf{8 0}$	$42 / 59 / 95$	70
WF 120	$\mathbf{1 2 0}$	$42 / 59 / 95$	110

Connection types
All types

4-pin, M8

Truth table

Switching type	Light-switching (Q)		Dark-switching ($\overline{\mathbf{Q}})$	
Light path free	yes	no	yes	no
PNP/NPN output	HIGH	LOW	LOW	HIGH
Function indicator (yellow) On	Off	Off	On	

Order information

Fork depth 40 mm		Fork depth 60 mm		Fork depth 95 mm	
Type	Order no.	Type	Order no.	Type	Order no.
WF2-40B410	6028428	WF2-60B410	6028436	WF2-95B410	6028443
WF5-40B410	6028429	WF5-60B410	6028437	WF5-95B410	6028444
WF15-40B410	6028430	WF15-60B410	6028438	WF15-95B410	6028445
WF30-40B410	6028431	WF30-60B410	6028439	WF30-95B410	6028446
WF50-40B410	6028432	WF50-60B410	6028440	WF50-95B410	6028447
WF80-40B410	6028433	WF80-60B410	6028441	WF80-95B410	6028448
WF120-40B410	6028435	WF120-60B410	6028442	WF120-95B410	6028449

Fork width
2 ... 120 mm
Fork sensors
Simple setting using 2-point Teach-in
PNP and NPN switching output
Light/dark switching adjustable
■ Rugged aluminium housing

See chapter Accessories
Cables and connectors

Dimensional drawing
All types

Adjustments possible
All types

1	Optical axis
2	Mounting holes, $\varnothing 4.2 \mathrm{~mm}$
3	Function indicator (red)
4	Function indicator (yellow), switching output
	"+"/"-" buttons and function button

Dimensions

Dimensions (mm)	\mathbf{A} Fork width	B Fork depth	C
WF 2	$\mathbf{2}$	$42 / 59 / 95$	14
WF 5	$\mathbf{5}$	$42 / 59 / 95$	14
WF 15	$\mathbf{1 5}$	$42 / 59 / 95$	27
WF 30	$\mathbf{3 0}$	$42 / 59 / 95$	42
WF 50	$\mathbf{5 0}$	$42 / 59 / 95$	40
WF 80	$\mathbf{8 0}$	$42 / 59 / 95$	70
WF 120	$\mathbf{1 2 0}$	$42 / 59 / 95$	110

Connection types
All types

4-pin, M8

	Fork width 225 mm
Fork sensors	

■ Simple accurate setting using multi-path potentiometer Universal switching output
■ Light-/dark-switching
\square Robust aluminium housing

Dimensional drawing
WF 225-B4150

Adjustments possible
All types

1 Optical axis
2 Mounting holes, $\varnothing 4.2 \mathrm{~mm}$
3 Sensitivity control
4 Function indicator (red), lightbeam blocked
5 Function indicator (yellow), lightbeam made

See chapter Accessories

Cables and connectors

Dark-switching

4-pin, M8

Truth table					Order information	
Switching mode	Light-switching (Q)		Dark-switching ($\overline{\mathbf{Q}}$)		Type	Order no.
Lightbeam made	Yes	No	Yes	No		
Output NPN	LOW	HIGH	HIGH	LOW		
Output PNP	HIGH	LOW	LOW	HIGH		

[^0]: む̃ Light-/dark-switching not required: equipment switches for the material to be scanned, which was under the light spot at the first Teach-in procedure (mark or background).
 The material speed must be zero during Teach-in (machine is idle).

 - The Teach-in button can be locked against unintentional activation with "Run".
 - A Teach-in procedure can be triggered when the switch setting is not defined.
 - The optimum transmission light was selected automatically.

 Teach-in is also possible via control wire.

[^1]: 1 Scanning distance 10 mm
 2 Scanning distance 20 mm
 3 Scanning distance 40 mm

[^2]: *) Further types on request

[^3]: 1
 Scanning distance 10 mm

[^4]: *) Further types on request

