JUMO Instrument Co. Ltd.

Temple Bank, Riverway Harlow, Essex CM 20 2TT, UK Phone: +44 1279635533
Fax: +44 1279635262
e-mail: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.
8 Technology Boulevard
Canastota, NY 13031, USA
Phone: 315-697-JUMO

Internet: www.jumo.us

JUMO IPC
 IGBT Power Converter
 with amplitude control

Brief description

The JUMO IPC is a power converter for controlling heater loads that previously required a transformer (either a variable transformer or the combination of a transformer with a thyristor power converter).
It functions in such a way that it can be considered to be an electronic transformer with a pulsed DC output.
It combines the advantages of conventional variable transformers, such as amplitude control and sinusoidal supply current loading, with the advantages of a thyristor power switch, such as current limiting, load monitoring, subordinate control action and so on. There is no electrical isolation between the supply voltage and the load voltage These power converters are employed wherever substantial resistive loads need to be switched.
A choke and a mains/line filter, in addition to the IPC power converter itself, are mandatory for operating the IPC. Only chokes or filters specified by JUMO may be used for this purpose. Thanks to the amplitude control (the current drawn from the supply is always sinusoidal), synchronous clock controls (as for burst-firing operation) and power-factor compensation networks (for the reactive power resulting from phase-control) are not needed.

Functional overview

Type 709050/X3 ...

Key features

- Low-interference on the supply with high-power resistive loads (flicker)
■ Operation of low-voltage heater elements directly from the electrical supply, without a step-down transformer
- Minimum harmonics in the plant supply, and low weight (no power transformer required)
- Short-circuit proof during power-on
- Supply current proportional to the power required (amplitude control)
- Control is independent of the resistance characteristic of the heater elements
- Minimum control reactive power
- Compact size
- Free choice of subordinate control loop U^{2}, P, I^{2}
- Compensation of the ageing process in SIC heater elements
- Indication if the voltage reserve is no longer able to compensate for ageing ${ }^{1}$
- Resistance limiting, protection for Molybdenum Disilizid-Super heater elements from overheating in the upper temperature range ${ }^{1}$
- Integrated semiconductor fuses to protect the IPC from a short to ground ${ }^{1}$

[^0]
Technical data

Control

Control signal	$0(4)-20 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{i}}=50 \Omega$
	$0(2)-10 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}=25 \mathrm{k} \Omega$
	$0(1)-5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}=12 \mathrm{k} \Omega \quad$ Manual control through an external $5 \mathrm{k} \Omega$ potentiometer
Input signal attenuation		Adjustment range $100-20 \%$
Base load setting		$0-100 \%$

Supply voltage

	Type 709050／X1．．．	Type 709050／X2．．．．	Type 709050／X3．．．
Supply voltage Control section	$\begin{gathered} 115 \mathrm{~V} \mathrm{AC}+15 \% /-20 \%, 48-63 \mathrm{~Hz} \text { (only with } 115 \mathrm{~V} \text { AC in the power section) } \\ 230 \mathrm{~V} \text { AC }+15 \% /-20 \%, 48-63 \mathrm{~Hz} \end{gathered}$		
Supply voltage Power section	$\begin{gathered} 115 \mathrm{~V} \text { AC }+15 \% /-20 \%, 48-63 \mathrm{~Hz}, 230 \mathrm{~V} \text { AC }+15 \% /-20 \%, 48-63 \mathrm{~Hz} \\ 400 \mathrm{~V} \text { AC }+15 \% /-20 \%, 48-63 \mathrm{~Hz} \end{gathered}$		
Load voltage $\mathrm{U}_{\mathrm{L} \text { rms }}$	20V，60V，90V，120V DC 工－	$\begin{aligned} & 20 \mathrm{~V}, 60 \mathrm{~V}, 90 \mathrm{~V}, 120 \mathrm{~V}, 150 \mathrm{~V}, 210 \mathrm{~V}, \\ & 270 \mathrm{~V}, 380 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~V}, 60 \mathrm{~V}, 90 \mathrm{~V}, 120 \mathrm{~V}, 150 \mathrm{~V}, \\ & 210 \mathrm{~V} \text { DC } \simeq \end{aligned}$
Load current $\mathrm{I}_{\text {L rms }}$	70 ADC 亿	70A／100A DC 亿－	200A DC 亿
Load type		resistive loads	

General characteristics

Power loss (W)

Note: The power losses appear as heat dissipated in the heat sinks of the power converter.
This heat must be removed by the on-site arrangements (e. g. switchgear cabinet) according to the climatic conditions !
Type 709050/X1... and Type 709050/X2...

Type 709050/82-12-400-150-100/252

Converter ratings: load voltage $=150 \mathrm{~V}$; load current $=100 \mathrm{~A}$; Supply voltage for power section $=400 \mathrm{~V}$

Resistive loads and Molybdenum Disilizid Super heater elements Data for heater element: load voltage $=140 \mathrm{~V}$; load current $=90 \mathrm{~A}$

Measure the maximum load voltage that is actually produced (e.g. 140V) and find the intercept point of this value with the supply voltage curve for the power section. The value on the Y axis is the corresponding power loss factor (e.g. 8.5).

Multiply the load current (e.g. 90A) that flows through the load resistor by the power loss factor that applies for the maximum load voltage (e.g. 140V) and the result is the power loss (in W).

Power loss $=90(\mathrm{~A}) \times$ power loss factor
Power loss $=90(\mathrm{~A}) \times 8.5=765 \mathrm{~W}$

Type 709050/92-12-400-150-100/252

Converter ratings: Load voltage $=150 \mathrm{~V}$; Load current $=100 \mathrm{~A}$;
Supply voltage for power section $=400 \mathrm{~V} ; \mathrm{P}$-control, $\mathrm{P}=6300 \mathrm{~W}$

SIC heater element

Data for SIC heater element: new: 70V/90A, old $140 \mathrm{~V} / 45 \mathrm{~A} ; \mathrm{P}=6300 \mathrm{~W}$
Measure the maximum load voltage that is actually produced for the new SIC heater element (e.g. 70V) and find the intercept point of this value with the supply voltage curve for the power section. The value on the Y axis is the corresponding power loss factor (e.g. 6.8).

Multiply the load current (e.g. 90A) that flows through the new SIC heater element by the power loss factor that applies for the maximum load voltage (e.g. 70 V) and the result is the power loss (in W).

Power loss $=90(\mathrm{~A}) \times$ power loss factor
Power loss $=90(A) \times 6.8=\mathbf{6 1 2 W}$

Type 709050/83-12-400-90-200/252

Converter ratings: load voltage $=90 \mathrm{~V}$; load current $=200 \mathrm{~A}$; Supply voltage for power section $=400 \mathrm{~V}$

Resistive loads and Molybdenum Disilizid Super heater elements Data for heater element: load voltage $=75 \mathrm{~V}$; load current $=130 \mathrm{~A}$

Measure the maximum load voltage that is actually produced (e.g. 75V) and find the intercept point of this value with the supply voltage curve for the power section. The value on the Y axis is the corresponding power loss factor (e.g. 7.5).

Multiply the load current (e.g. 130A) that flows through the load resistor by the power loss factor that applies for the maximum load voltage (e.g. 75V) and the result is the power loss (in W).

Power loss $=130(A) \times$ power loss factor
Power loss $=130(A) \times 7.5=975 \mathrm{~W}$

Type 709050/93-12-400-90-200/252

Converter ratings: Load voltage $=90 \mathrm{~V}$; Load current $=200 \mathrm{~A}$;
Supply voltage for power section $=400 \mathrm{~V} ; \mathrm{P}$-control, $\mathrm{P}=9000 \mathrm{~W}$

SIC heater element

Data for SIC heater element: new: 45V/200A, old 90V/100A; P = 9000W
Measure the maximum load voltage that is actually produced for the new SIC heater element (e.g. 45 V) and find the intercept point of this value with the supply voltage curve for the power section. The value on the Y axis is the corresponding power loss factor (e.g. 6.8).

Multiply the load current (e.g. 200A) that flows through the new SIC heater element by the power loss factor that applies for the maximum load voltage (e.g. 45 V) and the result is the power loss (in W).

Power loss $=200(\mathrm{~A}) \times$ power loss factor
Power loss $=200(A) \times 6.8=1360 W$

General data

Fault signal output	Type 709050/X1...	Type 709050/X2...	Type 709050/X3...	
Relay (SPDT-changeover contact) without contact suppression	150,000 switching actions at switched power level of 3A/230V 50Hz (resistive load)			
Optocoupler output		$\mathrm{I}_{\text {Cmax }}=2 \mathrm{~mA}, \mathrm{U}_{\text {CEOMax }}=32 \mathrm{~V}$		
Power converter dimensions				
(length \times width \times height)	$(272 \times 260 \times 175) \mathrm{mm}$	$(348.6 \times 300 \times 217) \mathrm{mm}$	$(403.5 \times 300 \times 257.5) \mathrm{mm}$	
Weight	approx. 9 kg	approx.17 kg	approx. 22.5 kg	

Chokes

Type	Dimensions	Connection cross-section	Tightening torque	Weight	Sales No.
L $=0.6 \mathrm{mH} / \mathrm{I}_{\mathrm{N}}=75 \mathrm{~A}$ IP20 enclosure protection as per EN 60529	Choke diameter: 155 mm Height: 135 mm Diameter of fixing hole: 10.4 mm	$4-25 \mathrm{~mm}^{2}$	screw terminals max. $4-4.5 \mathrm{Nm}$	approx. 7.5 kg	$70 / 00392474$
$\mathrm{L}=0.6 \mathrm{mH} / \mathrm{I}_{\mathrm{N}}=100 \mathrm{~A}$ IP20 enclosure protection as per EN 60529	Height: 208 mm, Width: $200 \times 200 \mathrm{~mm}$	$10-50 \mathrm{~mm}^{2}$	screw terminals max. $6-8 \mathrm{Nm}$	approx. 20 kg.	$70 / 00415759$
$\mathrm{L}=0.6 \mathrm{mH} / \mathrm{I}_{\mathrm{N}}=200 \mathrm{~A}$ IP20 enclosure protection as per EN 60529	Height: 190 mm, Width: $200 \times 385 \mathrm{~mm}$	$35-95 \mathrm{~mm}^{2}$	screw terminals max. $15-20 \mathrm{Nm}$	approx. 37 kg	$70 / 00436848$

EMC filter
For the supply to the power section

Nominal voltage, nominal current	Dimensions (length x width x height) in mm	Connection cross-section	Tightening torque	Weight	Permissible ambient temperature	Sales No.
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \text { AC, } \\ & \mathrm{I}_{\text {Nom }}=16 \mathrm{~A} \end{aligned}$	$(255 \times 50 \times 126)$	$0.25-4 \mathrm{~mm}^{2}$	$0.6-0.8 \mathrm{Nm}$	approx. 4 kg	$40^{\circ} \mathrm{C}$	70/00399527
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \mathrm{AC}, \\ & \mathrm{I}_{\text {Nom }}=20 \mathrm{~A} \end{aligned}$	$(289 \times 70 \times 140)$	$0.5-10 \mathrm{~mm}^{2}$	$1.5-1.8 \mathrm{Nm}$	$\begin{aligned} & \text { approx. } \\ & 5.5 \mathrm{~kg} \end{aligned}$	$40^{\circ} \mathrm{C}$	70/00438775
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \text { AC, } \\ & \mathrm{I}_{\text {Nom }}=32 \mathrm{~A} \end{aligned}$	(324 x 90×160)	$0.5-10 \mathrm{~mm}^{2}$	$1.5-1.8 \mathrm{Nm}$	$\begin{aligned} & \text { approx. } \\ & 9.5 \mathrm{~kg} \end{aligned}$	$40^{\circ} \mathrm{C}$	70/00409831
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \mathrm{AC}, \\ & \mathrm{I}_{\text {Nom }}=63 \mathrm{~A} \end{aligned}$	$(380 \times 117 \times 190)$	$0.5-16 \mathrm{~mm}^{2}$	$2-2.3 \mathrm{Nm}$	$\begin{aligned} & \text { approx. } \\ & 17 \mathrm{~kg} \end{aligned}$	$40^{\circ} \mathrm{C}$	70/00409990
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V} \mathrm{AC}, \\ & \mathrm{I}_{\text {Nom }}=100 \mathrm{~A} \end{aligned}$	$(445 \times 150 \times 220)$	$10-50 \mathrm{~mm}^{2}$	$6-8 \mathrm{Nm}$	$\begin{aligned} & \text { approx. } \\ & 26 \mathrm{~kg} \end{aligned}$	$40^{\circ} \mathrm{C}$	70/00431997
For the supply to the control section (only required if the power section is operated from 400 VAC)						
$\begin{aligned} & 115 \mathrm{~V} / 250 \mathrm{~V} \mathrm{AC}, \\ & \mathrm{I}_{\mathrm{Nom}}=1 \mathrm{~A} \end{aligned}$	(80 x $45 \times 30)$	through faston connectors $6.3 \times 0.8 \mathrm{~mm}$	-	$\begin{aligned} & \text { approx. } \\ & 120 \mathrm{~g} \end{aligned}$	$40^{\circ} \mathrm{C}$	70/00413620

Dimensions for Type 709050/X1...

Type 709050/X1...

Note:

Tightening torque for screws in power section (wrench size 10 mm a/f): max. 15 Nm .
Tightening torque for screw terminals, for 75A choke: $4-4.5 \mathrm{Nm}$
Tightening torque for green screw terminals in control section: $0.5-0.6 \mathrm{Nm}$

272

Connection diagram for Type 709050/X1...

\rightarrowConnection for	Screw terminal X103	Diagram
Load fault output, with relay Contact rating 230V/3A AC resistive load Relay drops out on fault	1 (SPST-NO) make contact $2($ SPST-NC $)$ break contact 3 common	
Load fault output, with optocoupler Ic $\max =2 \mathrm{~mA}$ $\mathrm{U}_{\text {CEO } \max }=32 \mathrm{~V}$	3 collector 1 emitter	

Wiring for single-phase operation Phase / N for Type 709050/X1...

Wiring for single-phase operation Phase / Phase for Type 709050/X1...

Dimensions

Type 709050/X2...

Note:
Tightening torque for the screws in the power section (socket wrench, $5 \mathrm{~mm} \mathrm{a} / \mathrm{f}$) is $6-8 \mathrm{Nm}$.
Tightening torque for screw terminals, for 100A choke: 6-8 Nm
Tightening torque for green screw terminals in control section: $0.5-0.6 \mathrm{Nm}$

EMC filter current	Length (mm)	Width (mm)	Height (mm)	Fixing hole spacing (mm)		Tightening torque	Connection crosssection (mm^{2})
for power section				A	B		
16A	255	50	126	25	240	$0.6-0.8 \mathrm{Nm}$	0.2-4
20A	289	70	140	50	295	$1.5-1.8 \mathrm{Nm}$	0.5-10
32A	324	90	160	50	295	$1.5-1.8 \mathrm{Nm}$	0.5-10
63A	380	117	190	65	330	$2-2.3 \mathrm{Nm}$	0.5-16
100A	445	150	220	100	385	6-8Nm	10-50
for control section							
1A	80	46	30	-	61		via faston connectors $6.3 \times 0.8 \mathrm{~mm}$

Type 709050/X3... Note:

Tightening torque for the screws in the power section (socket wrench, $5 \mathrm{~mm} \mathrm{a} / \mathrm{f}$) is $6-8 \mathrm{Nm}$ Tightening torque for the screws in the power section (socket wrench, 6 mm a/f) is $15-20 \mathrm{Nm}$ Tightening torque for screw terminals, for 200A choke: $15-20 \mathrm{Nm}$
Tightening torque for green screw terminals in control section: $0.5-0.6 \mathrm{Nm}$

Connection diagram for Type 709050/X2... and 709050/X3...

	Connection for	Screw connections in power section	Diagram
	Protective earth conductor	PE	PE-O PE
	Supply for power section	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~N}(\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{L1} \text { —○U } \\ \mathrm{N(L2)—ONM} \end{gathered}$
	Choke connection	$\begin{aligned} & 1 \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\text { ■o } 1 \mathrm{C}$
	Load connection	$\begin{aligned} & 1 \mathrm{D}- \\ & \mathrm{D}+ \end{aligned}$	$\begin{aligned} & \boxed{\square} \circ 1 \mathrm{D} \\ & \circ \end{aligned}$

	Connection for	Screw terminal X102	Diagram
	Current input (differential input)	$\begin{aligned} & 1- \\ & 2+ \end{aligned}$	ε_{02}^{01}
	Voltage input (referred to ground)	$\begin{aligned} & 3 \text { ground } \\ & 4+ \end{aligned}$	${ }_{+}^{+} \mathrm{O}_{\circ}$
	External manual adjustment Potentiometer $5 \mathrm{k} \Omega$	3 start (ground) 4 slider 5 end (+10 V)	
	Firing pulse inhibit (inhibit input) I_{K} approx. 1 mA (SPST-NC) break or (SPST-NO) make contact	6 ground $7+$	
\circlearrowleft	Power level output $0-10 \mathrm{~V}\left(\mathrm{U}^{2}, \mathrm{P}, \mathrm{I}^{2}\right)$ $I_{\text {max }}$ approx. 2 mA	$10+$ 6 ground	$+{ }_{+}^{+} 010$
	Resistance output $0-5 \mathrm{~V}$ (R) $I_{\text {max }}$ approx. 2 mA	$\begin{aligned} & 8+ \\ & 6 \text { ground } \end{aligned}$	$\underbrace{+5}_{0} 8$

\rightarrowConnection for Screw terminal X103	Diagram	
Load fault output, with relay Contact rating 230V/3A AC resistive load Relay drops out on fault	1 (SPST-NO) make contact $2($ SPST-NC $)$ break contact 3 common	
Load fault output, with optocoupler Ic $\max =2 \mathrm{~mA}$ $\mathrm{U}_{\text {CEO } \max }=32 \mathrm{~V}$	3 collector 1 emitter	

Wiring for single-phase operation Phase / N for Type 709050/X2... and 709050/X3...

Wiring for single-phase operation Phase / Phase for Type 709050/X2 and 709050/X3...

Order details

Accessories

Chokes

$\mathrm{L}=0.6 \mathrm{mH} / \mathrm{I}_{\mathrm{Nom}}=75 \mathrm{~A}, 100 \mathrm{~A}$ or 200A
EMC filter (for supply to power section)
$115 \mathrm{~V} / 250 \mathrm{~V} / 440 \mathrm{~V}$ AC $\mathrm{I}_{\text {Nom }}=16 \mathrm{~A}, 20 \mathrm{~A}, 32 \mathrm{~A}, 63 \mathrm{~A}$ or 100 A
EMC filter (for supply to control section)
(only necessary for 400V AC supply voltage in power section)
$115 \mathrm{~V} / 250 \mathrm{~V}$ AC $\mathrm{I}_{\text {Nom }}=1 \mathrm{~A}$
Semiconductor fuse (2 are necessary)
extra-fast 200A for $\mathrm{I}_{\text {Nom }}=100 \mathrm{~A}$
The I^{2} t value of the Semiconductor fuse must be smaller than $20000 A^{2} s$!
(use only for Type 709050/X2... and 709050/X3. !)

[^0]: 1. Only for Type 709050/X2 and ... /X3
