Postal address:
Phone:
Fax:
e-mail:
Internet:

JUMO Instrument Co. Ltd. JUMO House
Temple Bank, Riverway Harlow, Essex CM 20 2TT, UK Phone: +44 1279635533 Fax: $\quad+441279635262$ e-mail: sales@jumo.co.uk Internet: www.jumo.co.uk

JUMO Process Control, Inc.
8 Technology Boulevard
Canastota, NY 13032, USA
Phone: 315-697-JUMO

Internet: www.jumo.us

Thyristor Power Switches

with integrated heat sink for DIN rail or screw mounting

■ load currents $3 \times 20 A, 30 A$ and 45A (max.)

- load voltages 265 V and 660V (max.)

■ control voltage 4 - 32V DC
■ UL approval

Brief description

Thyristor power switches are used for contact-free switching of a.c. loads. A typical application is the switching of resistive-inductive loads at high switching rates, especially in the industrial sector, such as in the plastics packing industry, in HVAC engineering and in the construction of industrial furnaces.
Control and power section are electrically isolated by optocouplers.
The control signal range is compatible with the logic outputs of JUMO controllers.
The power section operates as a zero-voltage switch, which means that it always switches when the voltage passes through zero, irrespective of the instant of the signal change. This reduces the generation of interference in the electrical supply.
The input status is indicated by an LED.

TYA 432-100/ 30, 265 (660)

TYA 432-100/ 45, 660

TYA 432-100/3, 20, 660

Technical data

Load circuit

Type	TYA 432-100/30, 265	TYA 432-100/30, 660	TYA 432-100/45, 660	TYA 432-100/3, 20, 660
Load voltage	$24-265 \mathrm{~V}_{\mathrm{rms}}$	$42-660 \mathrm{~V}_{\mathrm{rms}}$		
Load current (maximum)	$30 \mathrm{~A}_{\text {rms }}\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$		$45 A_{r m s}\left(T_{a}=25^{\circ} \mathrm{C}\right)$	$20 \mathrm{~A}_{\text {rms }}\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$
Load current (minimum)	150 mA rms			
Fuse load integral limit $\mathrm{I}^{2} \cdot \mathrm{t}(\mathrm{t}=10 \mathrm{msec})$	$1800 A^{2} \cdot \mathrm{sec}$		$6600 A^{2} \cdot \mathrm{sec}$	$1800 A^{2} \cdot \mathrm{sec}$
Frequency	$45-65 \mathrm{~Hz}$			
Peak off-state voltage	$650 V_{p k}$	$1200 \mathrm{~V}_{\mathrm{pk}}$		
Leakage current	$<3 \mathrm{~mA}_{\text {rms }}$			
$\cos \varphi$ (p.f.)	>0.5 at 230 V AC	>0.5 at 600 V AC		

Control

Type	TYA 432-100/30, 265	TYA 432-100/30, 660	TYA 432-100/45, 660	TYA 432-100/3, 20, 660
Control signal range		$4-32 \mathrm{~V}$ DC		$5-32 \mathrm{~V}$ DC
Switch-on voltage		3.8 V DC		4.7V DC
Switch-off voltage	1.2 V DC			
Input current	12 mA at 32 V DC			24 mA at 32V DC
Response delay	$1 \cdot$ cycle length			<1 cycle length

General data

Type	TYA 432-100/30, 265	TYA 432-100/30, 660	TYA 432-100/45, 660	TYA 432-100/3, 20, 660
Operating mode	zero-crossing switching			
Electrical isolation	by optocoupler between control and load section; insulation voltage $4 \mathrm{kV} \mathrm{rrms}^{\text {s }}$			
Permissible ambient temperature	-30 to $+70^{\circ} \mathrm{C}$			
Electrical connection	by screw terminals; load / control (max. cross-section)			
	$\square 2 \times 2.5 \mathrm{~mm}$	2x2.5mm ${ }^{2}$	$\square 25 \mathrm{~mm}^{2} / 4.0 \mathrm{~mm}^{2}$	$\begin{gathered} \square 2 \times 2.5 \mathrm{~mm}^{2} / \\ 2 \times 2.5 \mathrm{~mm}^{2} \end{gathered}$
Housing			Crustan SK641-FR, PBT	PBT
Protection	IP20			
Weight	200 g		360g	380 g

Derating curves

Permissible load current as a function of ambient temperature

Power loss as a function of the load current

TYPE 432-100/30, 265 (660)

TYPE 432-100/45, 660

Note

The fins of the heat sink must be oriented vertically, to allow the heat to dissipate by natural convection.
Do not install any heat-sensitive components or devices in the vicinity of the power switch.

Derating curves

TYPE 432-100/3, 20, 660

Connection

TYA 432-100/30, 265 (660) TYA 432-100/45, 660

1-pole solid-state relay in a 1-phase application phase-neutral, phase-phase

Two 1-pole solid-state relays in a 3-phase application delta and star (economy circuit)

Three 1-pole solid-state relays in a 3-phase application delta, star, star with neutral

Connection

TYA 432-100/3, 20, 660

Dimensions

TYPE 432-100/30, 265 (660)

TYPE 432-100/45, 660 and TYA 432-100/3 20, 660

Minimum spacing for side-by-side mounting:
horizontal: 22.5 mm vertical: 120 mm

Order details

Type	Load voltage	Load current	Sales No.
TYA 432-100/30, 265	$24-265 \mathrm{~V}_{\text {rms }}$	$30 \mathrm{~A}_{\text {rms }}$	$70 / 00408538$
TYA 432-100/30, 660	$42-66 \mathrm{~V}_{\text {rms }}$	$30 \mathrm{~A}_{\text {rms }}$	$70 / 00418274$
TYA 432-100/45, 660	$45 \mathrm{~A}_{\text {rms }}$	$70 / 00408540$	
TYA 432-100/3, 20, 660	$42-660 \mathrm{~V}_{\text {rms }}$	$20 \mathrm{~A}_{\text {rms }}$	$70 / 00427435$

In order to ensure fault-free operation as well as a higher reliability when using thyristor power switches, we recommend the use of fuses with a superior breaking capacity (e. g. from Ferraz).

