JUMO GmbH & Co. KG

Delivery address:Mackenrodtstraße 14, 36039 Fulda, Germany

36039 Fulda, Germany
Postal address: 36035 Fulda, Germany
Phone: +49 661 6003-607
e-mail: mail@jumo.net
Internet: www.jumo.net

JUMO Instrument Co. Ltd.

JUMO House Temple Bank, Riverway Harlow, Essex CM 20 2TT, UK Phone: +44 1279 635533

Fax: +44 1279 635262 e-mail: sales@jumo.co.uk Internet: www.jumo.co.uk

JUMO PROCESS CONTROL INC.

885 Fox Chase, Suite 103 Coatesville PA 19320, USA Phone: 610-380-8002 1-800-554-JUMO Fax: 610-380-8009

Internet: www.JumoUSA.com

info@JumoUSA.com

e-mail:

Data Sheet 70.7040

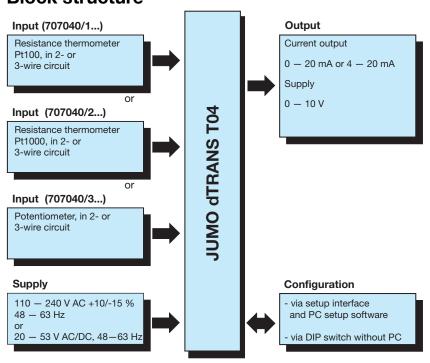
Page 1/8

JUMO dTRANS T04 Four-wire Transmitter, settable via DIP switch/PC setup program

for connection to Pt100/Pt1000 resistance thermometer or potentiometer; rail-mounted for building into control cabinets

Brief description

These transmitters are designed for industrial applications and are used to measure the temperature or resistance through a Pt100 or Pt1000 resistance sensor or potentiometer in 2-wire or 3-wire circuit connection.


The 0-20 mA, 4-20 mA or 0-10 V output signal is available linear with temperature/resistance. The continuous analog signal path enables a fast reaction of the output to a temperature change (analog continuous measurement instead of digital sampling rate). This results in a low-noise output signal that is immune to interference. High precision, even with small ranges, is ensured by the range-specific gain adjustment.

The transmitter can be set either on the instrument itself, via DIP switch, or through the PC setup program.

GUND CIRANS TO 4

dTRANS T04 Type 707040/...

Block structure

Controls

The chosen measuring range and output response can be set via DIP switch. Using the PC setup program, additional ranges and parameters are configurable.

Key features

- Measuring range selectable via DIP switch or through the PC setup program
- Choice of signal output: 0 — 10V, 0 — 20mA or 4 — 20mA
- Fast response, thanks to continuous analog measurement
- Low-noise current signal, immune to interference
- Electrical isolation between input, output / mains supply
- Current/voltage output

Technical data

Input

Measurement input	Pt100 EN 60 751	Pt1000 EN 60 751	Potentiometer		
Range limits	-200 to +850°C	-200 to +850°C	$0-11000\Omega$		
Connection circuit		2- and 3-wire circuit			
Configuration	through [DIP switch or using the PC setur	o program		
Shortest span	25°C	25°C	250Ω		
Largest span	1050°C	1050°C	11000Ω		
Range start for shortest span	-50°C to +20°C	-50°C to +20°C	$0-500\Omega$		
Range start for other spans see range organization on Page 5 and Page 6			Page 6		
Unit	°C (°F settable through the PC setup program)	°C (°F settable through the PC setup program)	Ω		
Sensor lead resistance for 3-wire connection		≤ 11Ω per conductor			
Sensor lead resistance for 2-wire connection	factory-set: 0Ω lead resistance, adjustable through the PC setup program				
Sensor current	≤ 0.5mA	≤ 0.1 mA	≤ 0.1 mA		
Sampling rate	continu	continuous measurement (analog signal path)			

Output

	e through DIP switch or PC setup ional DC current 0 — 20mA or 4 - DC voltage 0 — 10V	
proporti		– 20mA
	DC voltage 0 — 10V	
	linear with temperature	
	linear with resistance	
	$\leq \pm 0.1 \%^{1}$	
	≤ ± 0.2 % ¹	
≤750Ω		
$\leq \pm 0.01\% / 100\Omega^{1}$		
> 21.6mA — < 28mA (24mA typical)		
	≥ 10kΩ	
	$\leq \pm 0.1\%^{1}$	
	> 11 V - < 14 V (12 V typical)	
	≤ 40msec	
≤ 200 msec		
	230V AC / 23°C (± 5°C)	
$0.3\%^{1,2} \text{ or } \le \pm 0.3^{\circ}\text{C}^2$	$\leq \pm 0.3\%^{1,2} \text{ or } \leq \pm 0.3^{\circ}\text{C}^2$	$\leq \pm 0.3\%^{1}$
Supply voltage error $\leq \pm 0.05\%^{1}$		
		linear with resistance $\leq \pm 0.1\%^1$ $\leq \pm 0.2\%^1$ $\leq 750\Omega$ $\leq \pm 0.01\% / 100\Omega^1$ $> 21.6\text{mA} - < 28\text{mA} (24\text{mA typica})$ $\geq \pm 0.1\%^1$ $> 11\text{V} - < 14\text{V} (12\text{V typical})$ $\leq 40\text{msec}$ $\leq 200\text{msec}$ $\leq 230\text{V AC} / 23\text{°C } (\pm 5\text{°C})$ $\leq 40.3\%^{1.2} \text{ or } \leq \pm 0.3\text{°C}^2$ $\leq \pm 0.3\%^{1.2} \text{ or } \leq \pm 0.3\text{°C}^2$ $\leq 10.3\%^{1.2} \text{ or } \leq 10.3\text{°C}^2$ $\leq 10.3\%^{1.2} \text{ or } \leq 10.3\%^{1.2} $

All data refer to the range end value 10V or 20mA
 The larger value applies

Measuring circuit monitoring

Underrange: - current output 4 — 20mA - current output 0 — 20mA - voltage output 0 — 10V	falling to ≤ 3.6mA < 0mA (-0.05mA typical) < 0V -0.6V typical)
Overrange - current output 4 — 20mA - current output 0 — 20mA - voltage output 0 — 10V	rising to > 21.6mA — < 28mA (24mA typical) rising to > 21.6mA — < 28mA (24mA typical) rising to > 11V — < 14V (12V typical)
Probe short-circuit: - current output 4 — 20mA - current output 0 — 20mA - voltage output 0 — 10V	≥ 1.5mA — ≤ 3.6mA (2mA typical) < 0mA (-0.05mA typical) < 0V (-0.6V typical)

Probe and lead break:	Signal is configurable.	
- current output 4 — 20mA	positive signal: $> 21.6 \text{ mA} - < 28 \text{ mA}$ (24 mA typical)	
	negative signal: $\geq 1.5 \text{ mA} - \leq 3.6 \text{ mA}$ (2 mA typical)	
- current output 0 — 20mA	positive signal: $> 21.6 \text{ mA} - < 28 \text{ mA} \text{ (24 mA typical)}$	
	negative signal: < 0mA (-0.05mA typical)	
- voltage output 0 — 10V	positive signal: > 11V - < 14V (12V typical)	
	negative signal: < 0V (-0.6V typical)	

Electrical data

Supply voltage	110 — 240V AC +10/-15%, 48 — 63Hz	20 - 53V AC/DC, 48 - 63Hz
Power consumption	4VA	3VA
Electrical safety	to EN 61 010, Part 1 overvoltage category II, pollution degree 2, protection class I	to EN 61 010, Part 1 protection class III, for operation with SELV/PELV circuits
Test voltage	3700V	500V
Electrical isolation	The supply is electrically isolated from the input and the output. There is no electrical isolation between input, output and setup connector.	The supply is electrically isolated from the input and the output. There is no electrical isolation between input, output and setup connector.

Environmental influences

Operating temperature range	-25 to +55°C	
Storage temperature range	-40 to +90°C	
Storage temperature humidity	rel. humidity ≤ 85 %, no condensation	
Temperature error	≤ ± 0.01 % / °C ¹	
Climatic conditions	EN 60721-3-3 3K3 rel. humidity \leq 85 % annual average, no condensation	
Vibration strength	according to GL Characteristic 2	
EMC - interference emission - immunity to interference	EN 61 326 Class B to industrial requirements	
IP enclosure protection	IP20 to EN 60 529	

^{1.} All data refer to the range end value 10V or 20mA

Housing

. rousing				
Material	polycarbonate			
Flammability class	UL 94 V0			
Dimensions (W x H x D)	22.5 x 93.5 x 60mm			
Screw terminal	2,5 mm ² wire cross-section / 2.5 mm wire dia.			
Mounting	on 35mm x 7.5mm DIN rail to EN 60 715 A.1, for installation in control cabinets			
Operating position	unrestricted			
Weight	approx. 100g			

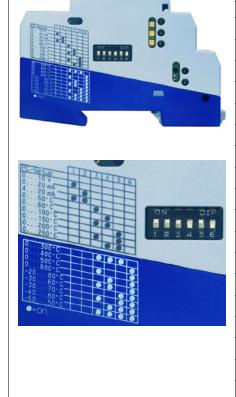
PC setup program

The PC setup program is used for configuration and fine adjustment of the transmitter from a PC (e.g. when the sensor drifts). Connection is through the PC interface with TTL/RS232 converter and adapter and the setup interface of the transmitter. In order to configure the transmitter, it must be connected to the supply.

Configurable parameters

- TAG number (14 characters)
- response to probe and cable break
- range start, range end
- output signal 0(4) 20 mA or 0 10 V
- lead resistance for 2-wire circuit

Fine adjustment

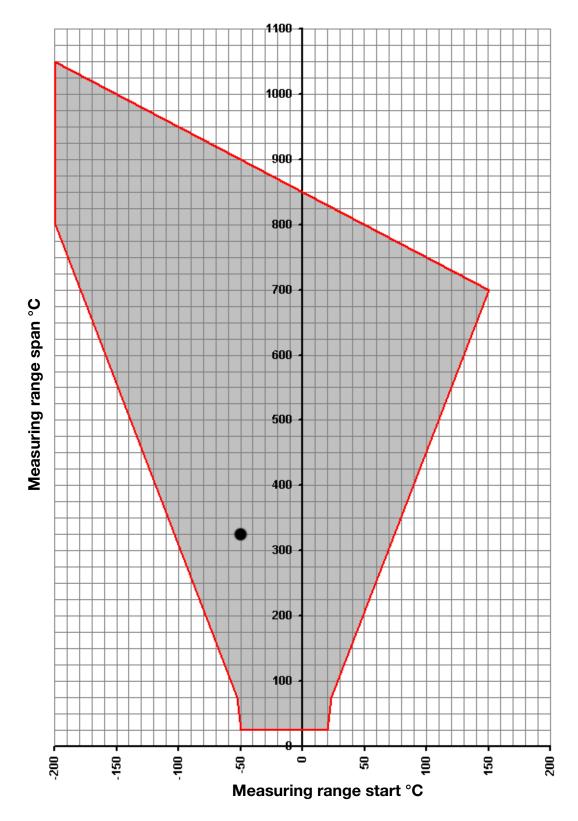

Fine adjustment means correction of the output signal of a configured transmitter; systematic errors such as those caused by an unsuitable probe mounting can be compensated. The signal can be adjusted in the range ± 0.2 mA for current output and ± 0.1 V for voltage output. Fine adjustment can only be carried out through the setup program.

Hardware and software requirements

The following hardware and software requirements must be met for installing and operating the PC setup program:

- IBM-PC or compatible PC with Pentium processor or higher
- 64 MB main memory
- 15MB available on hard disk
- CD-ROM drive
- 1 free serial interface
- Win 98, ME or Win NT4.0, 2000, XP

DIP switch configuration



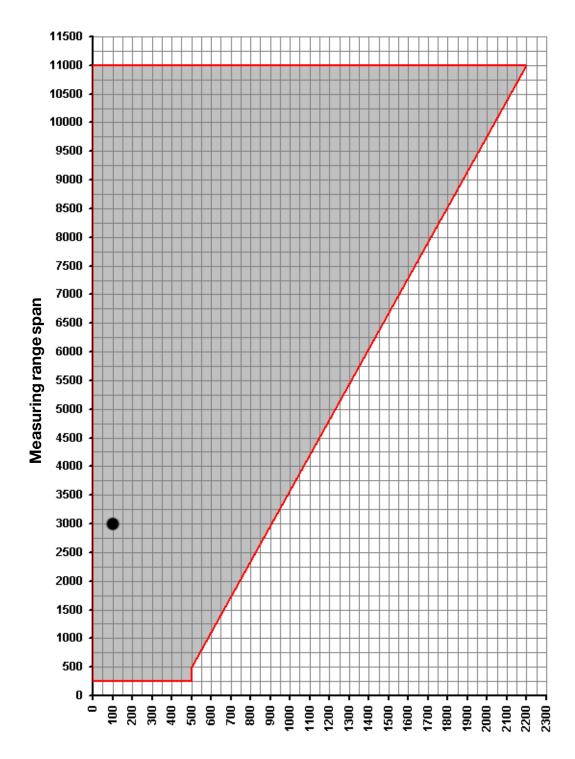
Function or measuring range	Function or measuring range	DIP switch						
for Pt100 and Pt1000	for potentiometer		2	3	4	5	6	
PC setup ¹	PC setup ¹							
Output 0 — 10V	Output 0 — 10V	•						
Output 0 — 20mA	Output 0 — 20mA		•					
Output 4 — 20 mA	Output 4 — 20mA	•	•					
Range 0 to 50°C	Range 0 -500Ω			•				
Range 0 to 60°C	Range 0 $-$ 1k Ω				•			
Range 0 to 100°C	Range 0 $-2k\Omega$			•	•			
Range 0 to 150°C	Range 0 $-3k\Omega$					•		
Range 0 to 200°C	Range 0 $-4k\Omega$			•		•		
Range 0 to 250°C	Range 0 $-5k\Omega$				•	•		
Range 0 to 300°C	Range 0 $-$ 6k Ω			•	•	•		
Range 0 to 400°C	Range $0 - 7k\Omega$						•	
Range 0 to 500°C	Range 0 $-$ 8k Ω			•			•	
Range 0 to 600°C	Range 0 $-$ 9k Ω				•		•	
Range -20 to +80°C	Range 0 $-$ 10k Ω			•	•		•	
Range -30 to +60°C	Range 0 $-$ 11 k Ω					•	•	
Range -30 to +70°C				•		•	•	
Range -40 to +60°C					•	•	•	
Range -50 to +50°C				•	•	•	•	

• = on

1. When configuring through the PC setup program, the input and output must be configured from the PC.

Measuring range organization (resistance thermometer)

All the possible range-start values in relation to the range span are contained within the gray area.


range span = range end - range start

Example: range start = -50°C, range end = 275°C

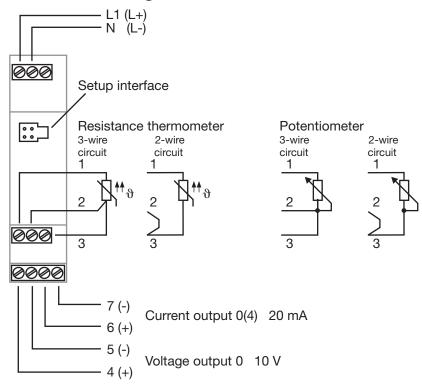
range span = range end - range start = 275 °C - (-50 °C) = 325 °C

Please note: When selecting the range start, make sure it lies within the gray area.

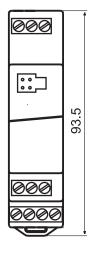
Measuring range organization (potentiometer)

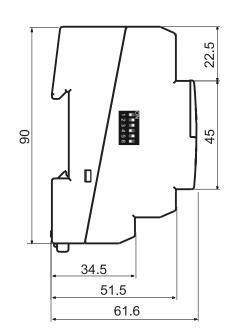
Measuring range start $\boldsymbol{\Omega}$

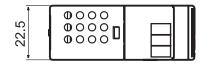
All the possible range-start values in relation to the range span are contained within the gray area.


range span = range end - range start

Example: $range start = 100 \Omega$, range end = 3100Ω


range span = range end – range start = 3100Ω – 100Ω = 3000Ω


Please note: When selecting the range start, make sure it lies within the gray area.


Connection diagram

Dimensions

Order details: JUMO dTRANS TO4

Four-wire transmitter, settable via DIP switch/PC setup program

(1) Basic version¹

			707040/1	dTRANS T04 for Pt100 resistance thermometer
			707040/2	dTRANS T04 for Pt1000 resistance thermometer
			707040/3	dTRANS T04 for potentiometer
			(2	2) Input
х	х		888	factory-set ² (3-wire circuit, 0 to 100°C)
		x	888	factory-set ² (3-wire circuit, $0 - 1k\Omega$)
х	х	х	999	configuration to customer specification (please specify in plain text)3
			(3	3) Output
Х	х	x	888	factory-set (0 - 20mA)
Х	х	х	999	setting to customer specification (please specify in plain text) ³
			(4	l) Supply
х	х	x	22	20 — 53V AC/DC, 48 — 63Hz
Х	Х	X	23	110 — 240V AC +10/-15%, 48 — 63Hz
				(1) (2) (3) (4)
Or	der	code		
Or	der	example		707040/1 - 888 - 888 - 23

- 1. It is not possible to switch between the sensor types.
- 2. Additional measuring ranges are selectable via DIP switch or PC setup program (see Page 4).
- 3. Please check whether the required measuring range and output can be set via DIP switch. In such a case, "factory-set" can be ordered.

Standard accessory

- Operating Manual

Accessories

- PC setup program, multilingual
- PC interface cable with TTL/RS232 converter and adapter