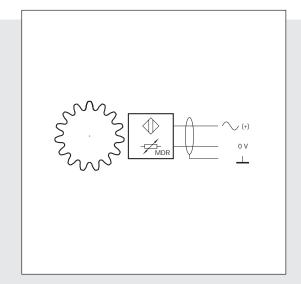

Electromagnetic sensors


Ferrostat sensors

DSE...Z, DSE...V

DSF...Z

CONCEPT

JNCTION

A ferro magnetic pole wheel passing the sensor head alters the magnetic field in a magnetically biased coil. Based on the law of induction, an A.C. output voltage is thereby generated, with frequency and amplitude proportional to the speed of the pole wheel.

A ferro magnetic pole wheel passing the sensor head alters the resistance value of a magnetically biased magnetic dependent resistor. An alternating signal proportional to the pole wheel speed is superimposed on the sensor output when biased with D.C.

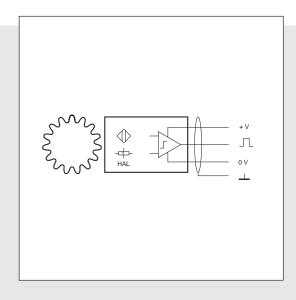
APPLICATIONS

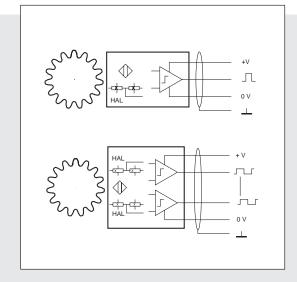
Speed measurements; also dependent on instrument frequency range:

Speed > 10 rpm
Frequency > 10 Hz
Rotational speed > 0.05 m/s

- No power supply required. Speed sensing also under extreme environmental conditions (temperature, radiation).
- Intrinsically safe Ex i versions available.
- Sensors with optional integrated line amplifier. The signal amplitude then approximates to the supply voltage and is independent of speed (above min. speed).
 Depending on frequency and cable capacity, the output is suitable for driving line lengths to 500 m and connection to logic gates having appropriate trigger levels.
- Speed measurements; dependent on instrument frequency range:
 Speed
 1 rpm

 $\begin{array}{ll} \text{Speed} & > 1 \text{ rpm} \\ \text{Frequency} & > 1 \text{ Hz} \end{array}$


- Signal level independent of speed.
- Intrinsically safe Ex i versions available.


Ferrostat sensors with line amplifier

DSF...V

Differential ferrostat sensors with line amplifier

DSD

A ferro magnetic pole wheel passing the sensor head influences the voltage in an integrated Hall element. The Hall voltage is amplified to a square wave signal with the frequency dependent on pole wheel speed. A ferro magnetic pole wheel passing the sensor head influences the voltages in two adjacent Hall elements. The Hall voltage difference is amplified to a square wave signal with the frequency dependent on pole wheel speed.

FUNCTION

Speed measurements:

Speed > 0.1 rpmFrequency > 0.1 HzPole wheel module ≥ 1

Square wave output:

The amplitude approximates to the supply voltage and is independent of speed. Depending on frequency and cable capacity, the output is suitable for driving line lengths to 500 m and connection to logic gates having appropriate trigger levels.

- Usable for speed measurement and zero speed.
- 2 sensors can be used for direction sensing.
- Intrinsically safe Ex i versions available.

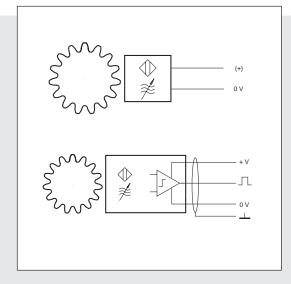
Speed measurements:

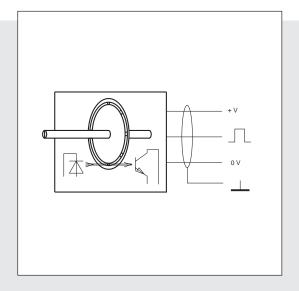
- Unaffected by external magnetic fields up to circa 300 Gauss or 30 mTesla.
- Square wave signal output:
 The amplitude approximates to the supply voltage and is independent of speed.
- Usable for speed measurement and zero speed detection.
- 2 sensors can be used for direction sensing.
- Sensors available with dual sensing chains for direction sensing, with 2 phase shifted square wave outputs.
- Intrinsically safe Ex i versions available.

Measuring principles

CONCEPT

APPLICATIONS


HF Sensors (Inductive sensors)


DSH...N, DSH...V

Rotary encoders

DSP

CONCEPT

UNCTION

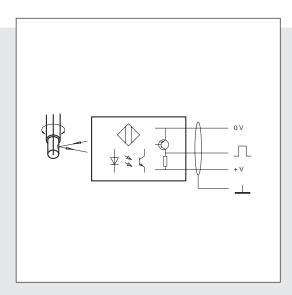
A metallic pole wheel passing the sensor head influences the damping in an oscillator. This changes the current consumption of the HF oscillator and superimposes an A.C. signal on the D.C. biased output. The signal frequency is proportional to the pole wheel speed.

The integral pole or code wheel is sensed by an internal sensor. The frequency output is proportional to speed.

APPLICATIONS

Speed measurements; also dependent on instrument frequency range:

Speed > 0
Frequency > 0
Pole wheel module ≥ 2


Sensing of various metallic pole wheels.

- No residual magnetic field present.
- 2 sensors can be used for direction sensing.
- Intrinsically safe Ex i versions available.
- Sensors available with integral line amplifier.
 The signal amplitude approximates to the supply voltage and is independent of speed. Depending on frequency and cable capacity, the output is suitable for driving line lengths to 500 m and connection to logic gates having appropriate trigger levels.

- Mechanical coupling to target shaft.
- Characteristics based on sensor type and pole or code wheel used.
- High pulse rate (number of pulses per rev) possible.
- Pole wheel and sensor protected by the housing against ingress of dust, dirt, swarf etc.
- Versions available with two 90° phase shifted square wave output signals for direction sensing.

Photo-electric reflective sensor

DSR

A reflective marker on the shaft being sensed is illumi-

nated by a LED integrated in the sensor. The light is reflected to an internal photo sensitive receiver. The signal is amplified and provided as a square wave signal with

CONCEPT

Measuring principles

FUNCTION

Speed measurements:

Speed > 0 Frequency > 0

frequency proportional to speed.

- Sensing of numerous non reflective target shafts with air gap to several centimetres.
- Square wave output:

The signal amplitude approximates to the supply voltage and is independent of speed. Depending on frequency and cable capacity, the output is suitable for driving line lengths to 500 m and connection to logic gates having appropriate trigger levels.

- Unaffected by magnetic fields.
- Usable for speed measurement and zero speed detection.
- 2 sensors can be used for direction sensing.

APPLICATIONS

SPEED MEASUREMENT IN GENERAL

General installation

advice

The frequency method

The speed of the target shaft is converted into a signal via a pole wheel/sensor combination, whereby the frequency is proportional to speed.

The relationship between sensor frequency and speed is based on the following relationship:

$$f = n \cdot p/60$$

where f = sensor frequency in Hz

n = speed of the target shaft

p = number of poles on the wheel or number of pulses per rev

If there is a gearbox between the target shaft and the pole wheel then this needs to be taken into account. To maximise the sensor frequency the pole wheel should be mounted on the fastest shaft e.g motor side.

$$f = n \cdot p \cdot g/60$$

where g = gearbox ratio between pole wheel and target shaft

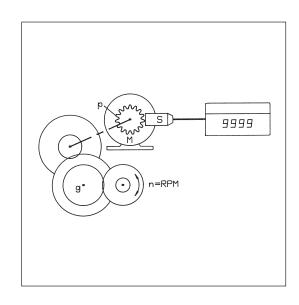
If the required measurement is linear speed in m/min then the roller diameter where the speed is sensed is also required.

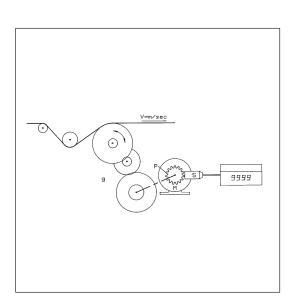
$$V = U \cdot \pi \cdot I$$

 \Rightarrow n = v/d • π

 $f = n \cdot p \cdot g/60$

 $\Rightarrow f = v \cdot p \cdot g/d \cdot 60 \cdot \pi$


where g = gearbox ratio between


pole wheel and target shaft

v = belt speed in m/min

d = diameter of the roller in m.

The matching of the measured result to respective machine characteristics (gearbox ratio, roller diameter, pole wheel) is via tachometer configuration of measurement time or machine factor.

Sensor Type Key DS...

Code for sensor type	Pulser with shaft	Α						
	Eddy current sensor	С						
	Differential Ferrostat sensor	D						
	Electromagnetic sensor	Е						
	Ferrostat sensor	F						
	HF sensor (NAMUR)	н						
	Sensor having integral	1						
	measurement electronics	•						General
	Capacitive sensor	K						installation
	Photoelectric sensor	Р						advice
	Reflective sensor	R						
	Wiegand sensor	W						
	Wiegana Schson	_ï						
Sensor size	Housing diameter/thread diameter	1	0					
0011301 3120	in mm	'	U					
	Encoder shaft diameter							
	in mm							
	Housing diameter/thread size	A	A					
	in inches e.g. EH = 5/8 inch							
	e.g. Li i = 5/6 ilicii							
Sensing resolution	Smallest permissible pole wheel module		1	0				
Sensing resolution	in tenths = number		'	U				
	Sensing distance for reflective sensors							
	Pulses per rev for encoders							
	(also 3 or 4 digit)							
	Magnet wheels		A	Α				
				1				_
Sequence number for	Sequential number code				x			
different versions	Soquomiai namboi sous							
-								-
Method of connection	Connector				Α			
	Screened cable				S			
	Unscreened cable or wires				K			
	Protective sleeve				М			
	Protective sleeve with connector on sensor				N			
	Protective sleeve with cable connector				Q.			
	Cable gland, cable connector				P			
	PCB connector				·			
	(AMP or flat connector to DIN 46244)				Z			
	<u> </u>							_
Code for max. permissible	Normal temperature to +85 °C					Т		
operating temperature	High temperature to 125 °C, 150 °C or					Н		
	200 °C dependent on type					- 1		
			1					_
Signal output code	NAMUR (2 wire with						N	
	superimposed signal)							
	Redundant system with amplifier						.,	
	Amplifier (open collector, push/pull etc.)						V	
	2 channel with phase shifted output						W	
	Redundant coil system without amplifier							
	Without amplifier						Z	
Code for special versions	Ex certified models						EX	
(where present)	Special configuration number						S	
	Special configuration number						3	
	20							
	DS							_

Connection

The max. permissible operating temperature and the min. allowed bend radius provided for both cable and protective sleeve should be taken into consideration. The sensor leads are susceptible to external interference. For this reason the following points should be noted:

- Uninterrupted screened cable should be used for the sensor connections wherever possible. The screen should only be terminated at the instrument on the terminal provided.
- The sensor leads must be laid as far as possible from large electrical machines and never laid parallel to high current cables.
- Only in exceptional circumstances i.e. with large sensor signal and short distance to the measurement electronics, unscreened cable can be used.

The max. permissible cable length is a function of the sensor voltage, cable run, cable capacitance and inductance and the maximum sensor frequency.

In any case, it is advantageous to keep the distance from sensor to electronics as short as possible. The sensor cable can be extended using an IP 20 rated terminal block to DIN 40050 or IEC 529. The following Jaquet extension cables are recommended:

2wire Part nr. 824L-30894
3wire Part nr. 824L-31081
4wire Part nr. 824L-30895
8wire Part nr. 824L-32257

Under favourable operating conditions, Jaquet recommended cables can be used under the following suggested conditions, based on sensor type and signal frequency, before a line amplifier is required:

Installation

The sensor is mounted with its head centre over the centre of the pole wheel. With gear wheels or slots and radial mounting, the sensor is normally fixed over the middle of the wheel. Dependent on the gear width, a degree of axial movement is permissible. The centre of the sensor must however remain a minimum of 3 mm from the edge of the wheel under all operating conditions.

It is important to ensure a rigid, vibration free mounting of the sensor.

Sensor vibration in relation to the pole wheel may induce additional pulses. During installation, the smallest possible air gap should be set. This gap should be selected such that the face of the sensor cannot come into contact with the pole wheel, even under worst case tolerance, bearing float and vibration conditions. The system calibration is not influenced by the air gap.

In the case of Differential Ferrostat sensors, the housing must be orientated to the pole wheel as shown in the corresponding drawing. Note the slot, groove, arrow, hole or orientation stud provided. Varying the position impairs the correct operation and noise immunity of the sensor.

The sensors are insensitive to oil, grease etc. and can be used in arduous conditions.

DSE...Z

Max. cable length	15 m	n with minimum detectable sensor voltage							
DSEV on the input of a TTL gate									
Max. cable length	135 m	with max. sensor frequency of	1 kHz						
Max. cable length	30 m	with max. sensor frequency of	4 kHz						
Max. cable length	14 m	with max. sensor frequency of	10 kHz						
DSEV with signal level 15%/85% of the supply voltage									
Max. cable length	635 m	with max. sensor frequency of	1 kHz						
Max. cable length	140 m	with max. sensor frequency of	4 kHz						
Max. cable length	66 m	with max. sensor frequency of	10 kHz						
DSFZ, DSHN									
Max. cable length	100 m	with max. sensor frequency of	4 kHz						
Max. cable length	40 m	with max. sensor frequency of	10 kHz						
Max. cable length	20 m	with max. sensor frequency of	20 kHz						
DSFV, DSDV, DSDW, DSHV									
Max. cable length	500 m	with max. sensor frequency of	4 kHz						
Max. cable length	200 m	with max. sensor frequency of	10 kHz						
Max. cable length	100 m	with max. sensor frequency of	20 kHz						

General

advice

installation

Pole wheel geometry

With pole wheels having unfavourable geometry (slot width or hole diameter <<0.8 times pole width), sensor signals having mark: space ratio far removed from 1:1 are generated. There is then the danger that with A.C. coupled instruments, unevenness at the pole head (tooth tip) can generate interference and affect the measurement. In such cases the instrument needs to automatically adjust the trigger level to match the signal amplitude and screen out the interference (Jaquet option S11).

Explosion protection

When using sensors in intrinsically safe configurations EEx, the operating details and restrictions provided in the test certificate or certificate of conformity must be observed e.g.

- Operating temperature in relation to the temperature class and the total available electrical power in the supply and signal circuits.
- Max. permissible voltages supply and signal output.
- Max. permissible external capacitance and inductance.
- With electromagnetic sensors, the max. permissible radial speed of the pole wheel for a given air gap.

Test possibilities

Electromagnetic sensors without amplifier

Measurement of coil resistance.

Measurement of coil inductance.

Measurement of induced voltage when passing an iron piece in front of the sensor.

Electromagnetic sensors with amplifier

Measurement of current consumption via the external pull up resistor or in the supply lead.

Measurement of induced voltage when passing an iron piece in front of the sensor.

Ferrostat sensors without amplifier

Measurement of the element's resistance.

Measurement of resistance change when passing an iron piece in front of the sensor.

Measurement of current consumption via the external pull up/pull down resistor.

Ferrostat sensors with amplifier

Measurement of current consumption in the supply lead.

Measurement of signal generated when passing an iron piece in front of the sensor.

Ferrostat Differential sensors with amplifier

Measurement of current consumption in the supply lead.

Measurement of signal generated when passing an iron piece in front of the sensor. (Sensor connected to supply and iron passing head like a pole wheel.)

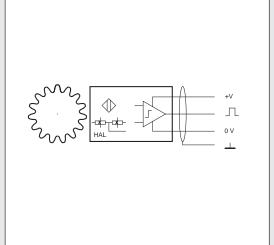
HF sensors (inductive) without amplifier

Measurement of current consumption and change in the supply lead via the external pull up/pull down resistor when passing a metal target in front of the sensor.

HF sensors (inductive) with amplifier

Measurement of current consumption in the supply lead.

Measurement of signal generated when passing a metal target in front of the sensor. (Sensor connected to supply.)


Rotary encoders with shaft coupling

Measurement of current consumption in the supply lead.

Measurement of pulses generated when the shaft is turned. (Sensor connected to supply.)

DSD

DSD ferrostat sensors are suitable for generating speed dependent signals when used with a pole wheel (steel gear wheel, preferably with involute gear form).

They exhibit dynamic or static behaviour with guaranteed pulse generation down to between 5 and 0 Hz.

The sensor element is a magnetically biased differential Hall sensor followed by a short circuit proof amplifier. The sensor characteristic is not rotationally symmetrical.

Connection

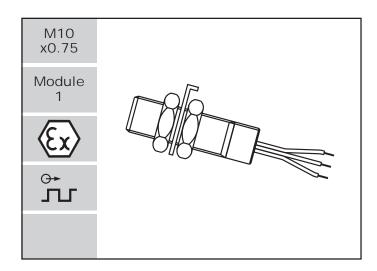
The sensor connections are sensitive to interference. The following 2 points should therefore be noted:

- 1) A screened 3 core cable must be used for connections. The screen must be taken all the way to the terminal provided on the instrument and not earthed.
- 2) The sensor cables should be laid as far from large electrical machines as possible and must never be laid parallel to high current cables.

The maximum permissible cable length is a function of sensor supply voltage, cable routing along with cable capacitance and inductance and max. signal frequency.

In general it is advantageous to keep the distance between sensor and instrumentation to a minimum. The sensor cable may be lengthened via suitable IP 20 terminals and Jaquet S3 cable p/n 824L-31081.

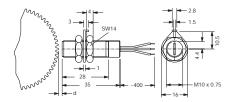
Installation


These sensors incorporate a differential Hall element. The housing must therefore be orientated to the pole wheel as shown in the dimensional diagram (note the slot, arrow or hole). Incorrect positioning of the sensor affects its correct operation and noise immunity. The sensor is mounted with its centre over the centre of the pole wheel. With gear wheels or slots and radial mounting, the sensor is normally fixed over the middle of the wheel. Dependent on the gear width, a degree of axial movement is permissible. The centre of the sensor must however remain a minimum of 3 mm from the edge of the wheel under all operating conditions.

It is important to ensure a rigid, vibration free mounting of the sensor. Sensor vibration in relation to the pole wheel may induce additional pulses.

The sensors are insensitive to oil, grease etc. and can be used in arduous conditions. If the cable is to come into contact with aggressive materials, then teflon cable should be specified. The sensor should be installed with the smallest possible air gap. This air gap must however not allow the face of the sensor to come into contact with the pole wheel. The air gap does not affect the calibration of the complete system.

DSD 1010 K, P



Features


- With amplifier
- Static function
- Lower frequency limit: 0 Hz
- Available as models FTG 1089.00 Ex and FTG 1089.01 Ex in intrinsically safe class EEx ia II C T5/T6
- Sensor housing must be aligned to the pole wheel

Dimensions

Version P

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSD 1010.00 KTV	343Z-03831	Wire	M10x0.75	20	-25+85	previously FTG 1089.00
DSD 1010.00 KTV Ex	343Z-03832	Wire	M10x0.75	20	-25(T5)+75, (T6)+60	previously FTG 1089.00 Ex
DSD 1010.00 PTV	343Z-03990	Connector	M10x0.75	23	-25+85	previously FTG 1089.01
DSD 1010.00 PTV Ex	343Z-03837	Connector	M10x0.75	23	-25(T5)+75, (T6)+60	previously FTG 1089.01 Ex

Type DSD 1010 Version K, P

Technical data

Supply

Power Supply Supply voltage: 5V ±10%, max. load 12 V, reverse polarity protection.

Current consumption: max. 16 mA.

Input

Frequency range 0 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

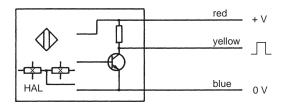
Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥1, min. tooth width 3 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1.0: 0.1...0.5 mm

Module 1.0: 0.1...0.5 mm Module 2.0: 0.1...1.3 mm ≥ Module 4.0: 0.1...1.5 mm


Output

Signal output Square wave signals, mark space approx. 1:1, D.C. coupled to the supply, signal-amplitude

corresponding to power supply (max. allowed sink current = 25 mA at a saturation voltage < 0.4 V).

The output is connected through a pull-up 1.8 $k\Omega$ to the plus pole of the power supply.

Connections

Mechanical

Protection class IP68 (head), IP67 (wire connection), IP50 (jack connection).

 $\begin{array}{ll} \mbox{Vibration immunity} & \mbox{3 g}_{\mbox{\tiny n}} \mbox{ in the range } 4...100 \mbox{ Hz}. \\ \mbox{Shock immunity} & \mbox{20 g}_{\mbox{\tiny n}} \mbox{ during } 11 \mbox{ ms, half-sine wave.} \\ \end{array}$

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

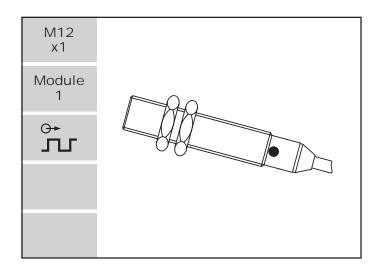
Housing Argentan (German silver) CuNi10Zn42Pb DIN 2.0770, front side hermetically sealed,

electronic components potted in a chemical- and age-proof synthetic resin.

Dimensions according to model overview and dimensional drawing.

Weight Acc. to model overview.

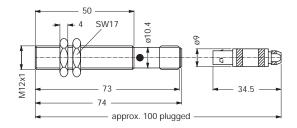
Operating instructions 343E-63726


Versions

Version K Wires teflon insulated, length 400 mm, 0.22 mm² (AWG 24).

Version P Connector, part nr. 343C-72577.

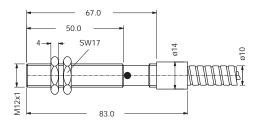
DSD 1210 A, S, M



Features

- With amplifier
- Static function
- Lower frequency limit: 0 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSD 1210.01 STV	374Z-03712	Cable 5 m	M12x1	160	-25+85	Standard
DSD 1210.01 SHV	374Z-03716	Cable 2 m	M12x1	100	-40+125	Standard
DSD 1210.01 SHV	374Z-03762	Cable 5 m	M12x1	195	-40+125	Standard
DSD 1210.01 ATV	374Z-04059	Connector	M12x1	35	-25+85	Standard
DSD 1210.01 AHV	374Z-04163	Connector	M12x1	35	-40+125	Standard
DSD 1210.01 MTV	374Z-04136	Protective hose 5 m	M12x1	680	-25+85	Standard

Type DSD 1210 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8...30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 16 mA (without load).

Input

Frequency range 0 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

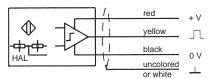
Pole wheel 2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

> Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module ≥1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

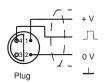
eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.1...0.5 mm

0.1...1.3 mm Module 2: ≥ Module 4: 0.1...1.5 mm


Output

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply


(negative pole = reference voltage), max. load 25 mA,

Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min). Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in

> a chemical- and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

Weight Acc. to model overview.

Operating instructions 374E-63870, version with integral cable; 374E-63805, version with integral connector.

Versions

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm2 (AWG 24), stranded wire

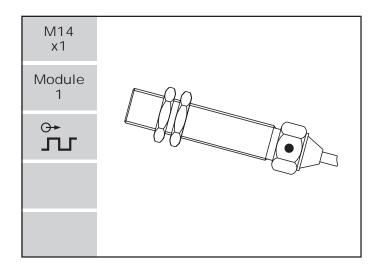
(Metal net insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT Protection hose over PVC cable: Tube 825G-36148 made of profile milled steel plate with PUR

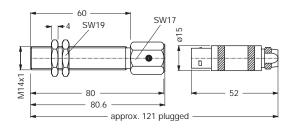
cover, blue. Weather and waterproof, conditionally oil and acid resistant.


Outer Ø 10 mm, bending radius = min. 32 mm, weight 75 g/m.

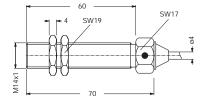
Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35922; Connection plug: Part nr. 820A-35921.

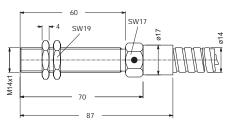
DSD 1410 A, S, M



Features


- With amplifier
- Static function
- Lower frequency limit: 0 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSD 1410.01 STV	374Z-04182	Cable 5 m	M14x1	210	-25+85	Standard
DSD 1410.01 SHV	374Z-04183	Cable 2 m	M14x1	155	-40+125	Standard
DSD 1410.01 ATV	374Z-04164	Connector	M14x1	90	-25+85	Standard
DSD 1410.01 AHV	374Z-04165	Connector	M14x1	90	-40+125	Standard
DSD 1410.01 MTV	374Z-04139	Protective hose 5 m	M14x1	920	-25+85	Standard

Type DSD 1410 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8...30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 16 mA (without load).

Input

Frequency range 0 Hz...20 kHz

Cable shield connected to the supply negative pole. Noise generator between Noise immunity

housing and electronics

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4). Ferromagnetic toothed wheel (i.e. Ust37-2), involute gear form preferred.

Module ≥1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

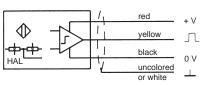
eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.1...0.5 mm

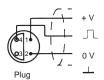
0.1...1.3 mm Module 2: ≥ Module 4: 0.1...1.5 mm

Output

Pole wheel


Signal output Square wave signals from push-pull stage, D.C. coupled to the supply

(negative pole = reference voltage), max. load 25 mA,


Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA,

short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 5 g in the range 5...2000 Hz. Shock immunity 50 g_a during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min). Stainless steel 1.4305, front side hermetically sealed, electronic components potted in Housing

a chemical- and age-proof synthetic resin.

Dimensions according to model overview and dimensional drawing .

Weight Acc. to model overview.

Operating instructions 374E-63870, version with integral cable; 374E-63805, version with integral connector.

Versions

PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire Version ST

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

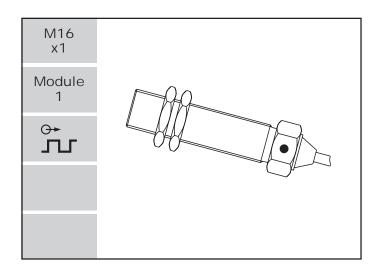
Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), stranded wire

(Metal net insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

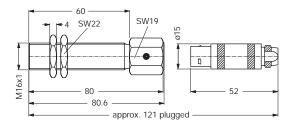
Version MT Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate with PVC


cover, grey. Weather and waterproof, conditionally oil and acid resistant.

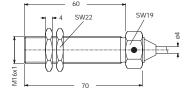
Outer Ø 14 mm, bending radius = min. 40 mm, weight 130 g/m. Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732.

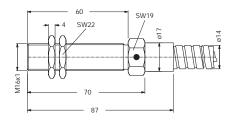
DSD 1610 A, S, M



Features


- With amplifier
- Static function
- Lower frequency limit: 0 Hz
- Sensor housing has to be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 1610.01 STV	374Z-04185	Cable 5 m	M16x1	215	-25+85	Standard
DSD 1610.01 SHV	374Z-04186	Cable 2 m	M16x1	155	-40+125	Standard
DSD 1610.01 ATV	374Z-04166	Connector	M16x1	95	-25+85	Standard
DSD 1610.01 AHV	374Z-04167	Connector	M16x1	95	-40+125	Standard
DSD 1610.01 MTV	374Z-04142	Protective hose 5 m	M16x1	925	-25+85	Standard

Type DSD 1610 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8...30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 0 Hz...20 kHz

Cable shield connected to the supply negative pole. Noise generator between Noise immunity

housing and electronics

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

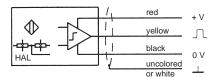
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module \geq 1, Pole wheel

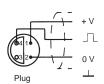
min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.1...0.5 mm 0.1...1.3 mm Module 2:

≥ Module 4: 0.1...1.5 mm


Output

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply


(negative pole = reference voltage), max. load 25 mA, Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA,

Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 5 g in the range 5...2000 Hz. 50 g_a during 20 ms, half-sine wave. Shock immunity

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min). Housing

Stainless steel, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions according to model overview and dimensional drawing.

Weight

Operating instructions 374E-63870, version with integral cable; 374E-63805, version with integral connector.

Versions

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer \emptyset = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), stranded wire

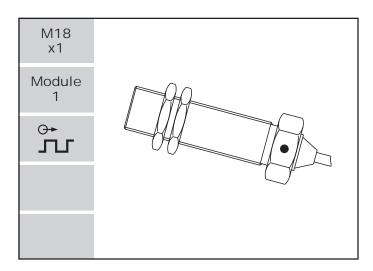
(Metal net insulated from housing), white.

Outer \emptyset = max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate

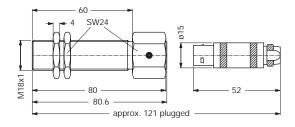
with PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant.


Outer \emptyset = 14 mm, bending radius = min. 40 mm, weight 130 g/m.

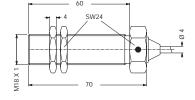
Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732.

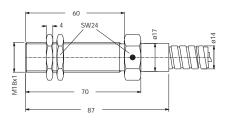
DSD 1810 A, S, M



Features


- With amplifier
- Static function
- Lower frequency limit: 0 Hz
- Sensor housing has to be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 1810.01 STV	374Z-04188	Cable 5 m	M18x1	220	-25+85	Standard
DSD 1810.01 SHV	374Z-03991	Cable 2 m	M18x1	160	-40+125	Standard
DSD 1810.01 ATV	374Z-04168	Connector	M18x1	100	-25+85	Standard
DSD 1810.01 AHV	374Z-04169	Connector	M18x1	100	-40+125	Standard
DSD 1810.01 MTV	374Z-04145	Protective hose 5 m	M18x1	930	-25+85	Standard

Type DSD 1810 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8...30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 0 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between housing

and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

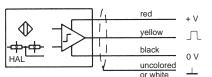
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module \geq 1,

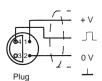
min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.1...0.5 mm Module 2: 0.1...1.3 mm

≥ Module 4: 0.1...1.5 mm


Output

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply


(negative pole = reference voltage), max. load 25 mA, <u>Output voltage-HI:</u> > (supply voltage - 2.5 V) at I = 25 mA,

Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions according to model overview and dimensional drawing.

Weight Acc. to model overview.

Operating instructions 374E-63870, version with integral cable; 374E-63805, version with integral connector.

Versions

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer \emptyset = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Version SH <u>Teflon cable:</u> Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), stranded wire

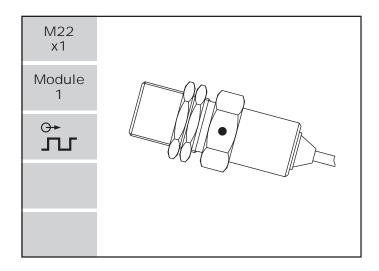
(Metal net insulated from housing), white.

Outer $\emptyset = \max$. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT <u>Protection hose over PVC cable:</u> Tube 825G-30924 made of profile milled steel plate

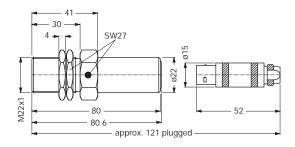
with PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant.


Outer \emptyset = 14 mm, bending radius = min. 40 mm, weight 130 g/m.

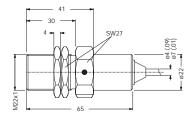
Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732.

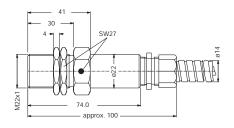
DSD 2210 A, S, M



Features


- With amplifier
- Static function
- Lower frequency limit: 0 Hz
- Sensor housing has to be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 2210.01 STV	374Z-03750	Cable 5 m	M22x1	565	-25+85	Standard
DSD 2210.01 SHV	374Z-03782	Cable 2 m	M22x1	229	-40+125	Standard
DSD 2210.01 ATV	374Z-04170	Connector	M22x1	130	-25+85	Standard
DSD 2210.01 AHV	374Z-04171	Connector	M22x1	130	-40+125	Standard
DSD 2210.01 MTV	374Z-04146	Protective hose 5 m	M22x1	1000	-25+85	Standard
DSD 2210.09 STV	374Z-04120	Cable 5 m	M22x1	250	-25+85	Standard

Type DSD 2210 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8....30 V D.C., max. superimposed A.C. voltage 25 mVpp;

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 0 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

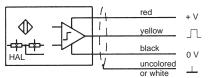
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module ≥ 1,

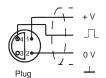
min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.1...0.5 mm 0.1...1.3 mm Module 2:

≥ Module 4: 0.1...1.5 mm


Output

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply


(negative pole = reference voltage), max. load 25 mA, Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA,

short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 5 g in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min). Insulation

Housing Stainless steel, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions according to model overview and dimensional drawing .

Weight Acc. to model overview.

Operating instructions 374E-63870, version with integral cable; 374E-63805, version with integral connector.

Versions

Version ST (.01) PVC cable: Part nr. 824L-31081, 3wire, 3 x 0.75 mm², stranded wire

(Metal net insulated from housing), grey. Outer \emptyset = max. 7.4 mm,

bending radius = min. 110 mm, weight 80 g/m.

Standard length for version ST: 5 m.

Version ST (.09) PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer \emptyset = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Standard length for version ST. 5 m.

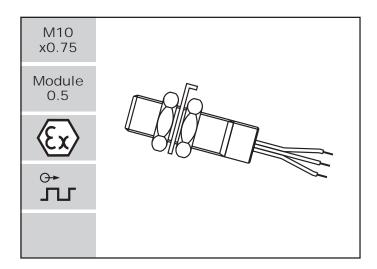
Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm2 (AWG 24), stranded wire

 $\overline{\text{(Metal net insulated from housing)}}$, white. Outer $\emptyset = \text{max}$. 4.0 mm, bending radius = min. 60 mm,

weight 32 g/m. Standard length for version SH: 2 m, 5 m.

Version MT Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate

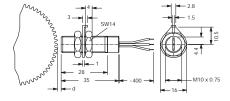
with PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant.


Outer $\emptyset = 14$ mm, bending radius = min. 40 mm, weight 130 g/m.

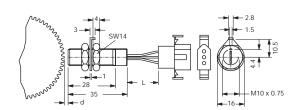
Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732. 29

DSD 1005 K, P



Features


- With amplifier
- Dynamic characteristic
- Available as models FTG 1088.00 Ex and FTG 1088.01 Ex in intrinsically safe class EEx ia II C T5/T6
- Sensor housing must be aligned to the pole wheel

Dimensions

Version K

Version P

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 1005.00 KTV	343Z-03828	Wire	M10x0.75	20	-25+85	previously FTG 1088.00
DSD 1005.00 KTV Ex	343Z-03772	Wire	M10x0.75	20	-25(T5)+75,(T6)+60	previously FTG 1088.00 Ex
DSD 1005.00 PTV	343Z-03835	Connector	M10x0.75	23	-25+85	previously FTG 1088.01
DSD 1005.00 PTV Ex	343Z-03770	Connector	M10x0.75	23	-25(T5)+75,(T6)+60	previously FTG 1088.01 Ex

Type DSD 1005 Version K, P

Technical data

Supply

Power Supply Supply voltage: 5 V ±10%, max. load 12 V, reverse polarity protection.

Current consumption: max. 16 mA.

Input

Frequency range 5 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

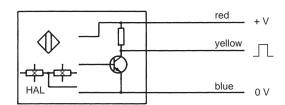
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel (i.e. Ust37-2), involute gear form preferred. Module ≥ 0.5,

min. tooth width 3 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm,

Pole wheel-sensor gap with Module 0.5: 0.1...0,4 mm


Module 1.0: 0.1...1.0 mm ≥ Module 2.0: 0.1...1.3 mm

Output

Signal output Square wave voltage, mark-space approx 1:1, D.C. coupled to the supply, signal-amplitude

corresponding to supply voltage. (max. allowed sink current = 25 mA at a saturation voltage < 0,4V). The output is connected through a pull-up resistor of 1.8 $k\Omega$ to the plus pole of the power supply.

Connections

Mechanical

Protection class IP68 (head), IP67 (wire connection), IP50 (jack connection).

Vibration immunity $3 g_n$ in the range 4...100 Hz. Shock immunity $20 g_n$ during 11 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500V/50 Hz/1 min).

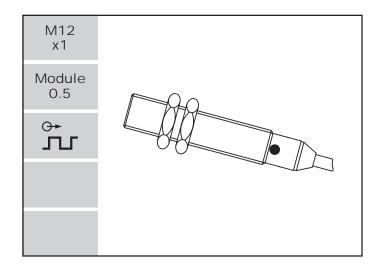
Housing Argentan (German silver) CuNi10Zn42Pb DIN 2.0770, front side hermetically sealed,

sensor components moulded in chemical- and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

Acc. to model overview.

Operating instructions 343E-63725

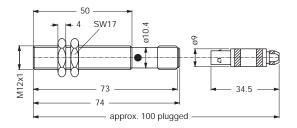
Versions


Weight

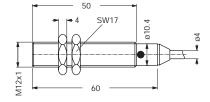
Version K Wires teflon insulated, length 400 mm, 0.22 mm² (AWG 24).

Version P Connector, Part nr. 343C-72577.

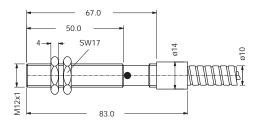
DSD 1205 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit: 5 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 1205.22 STV	374Z-03784	Cable 5 m	M12x1	160	-25+85	Standard
DSD 1205.22 SHV	374Z-03781	Cable 2 m	M12x1	100	-40+125	Standard
DSD 1205.22 ATV	374Z-04162	Connector	M12x1	35	-25+85	Standard
DSD 1205.22 AHV	374Z-04172	Connector	M12x1	35	-40+125	Standard
DSD 1205.22 MTV	374Z-04055	Protective hose 5 m	M12x1	680	-25+85	Standard

Type DSD 1205 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8....30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 5 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

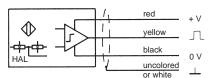
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module ≥ 0.5,

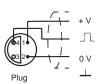
min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 0.5: 0.1...0.3 mm Module 1.0: 0.1...1.5 mm

≥ Module 2.0: 0.1...2.0 mm


Output

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply


(negative pole = reference voltage), max. load 25 mA, <u>Output voltage-HI:</u> > (supply voltage - 2.5 V) at I = 25 mA,

Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel, front side hermetically sealed, electronic components potted in a chemical- and

age-proof synthetic resin. Dimensions according to model overview and dimensional drawing .

Weight Acc. to model overview.

Operating instructions 374E-63871, version with integral cable; 374E-63878, version with integral connector.

Versions

Version ST <u>PVC cable:</u> Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer \emptyset = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Standard length for version ST: 5 m.

Version SH <u>Teflon cable:</u> Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), stranded wire

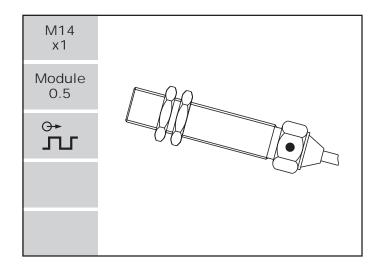
(Metal net insulated from housing), white.

Outer Ø = max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT Protection hose over PVC cable: Tube 825G-36148 made of profile milled steel plate

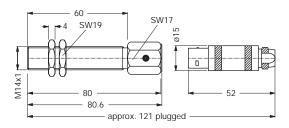
with PUR cover, blue. Weather and waterproof, conditionally oil and acid resistant.


Outer $\emptyset = 10$ mm, bending radius = min. 32 mm, weight 75 g/m.

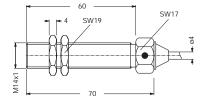
Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35922; Connection plug: Part nr. 820A-35921.

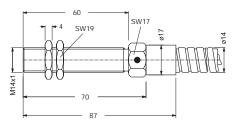
DSD 1405 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit: 5 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 1405.22 STV	374Z-04192	Cable 5 m	M14x1	210	-25+85	Standard
DSD 1405.22 SHV	374Z-04193	Cable 2 m	M14x1	150	-40+125	Standard
DSD 1405.22 ATV	374Z-04173	Connector	M14x1	90	-25+85	Standard
DSD 1405.22 AHV	374Z-04174	Connector	M14x1	90	-40+125	Standard
DSD 1405.22 MTV	374Z-04152	Protective hose 5 m	M14x1	920	-25+85	Standard

Type DSD 1405 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8....30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 5 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

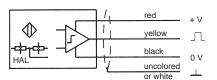
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module \geq 0.5,

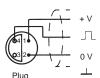
min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 0.5: 0.1...0.3 mm Module 1.0: 0.1...1.5 mm

Module 1.0: 0.1...1.5 mm ≥ Module 2.0: 0.1...2.0 mm


Output

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply


(negative pole = reference voltage), max. load 25 mA, <u>Output voltage-HI:</u> > (supply voltage - 2.5 V) at I = 25 mA,

Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing .

Weight Acc. to model overview.

Operating instructions 374E-63871, version with integral cable; 374E-63878, version with integral connector.

Versions

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Standard length for version ST: 5 m.

Version SH <u>Teflon cable:</u> Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), stranded wire

(Metal net insulated from housing), white.

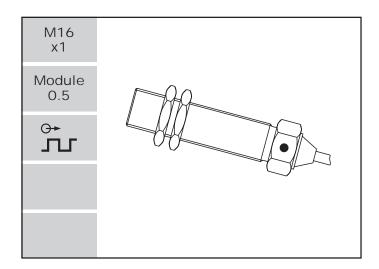
Outer \emptyset = max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH. 2 m, 5 m.

Version MT <u>Protection hose over PVC cable:</u> Tube 825G-30924 made of profile milled steel plate

with PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant.

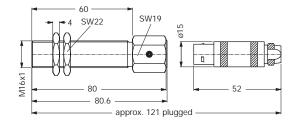
Outer $\emptyset = 14$ mm, bending radius = min. 40 mm, weight 130 g/m.


Standard length for version MT: 5 m.

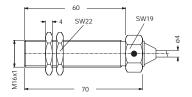
Version A <u>Connection type:</u> Part nr. 820A-35731; <u>Connection plug:</u> Part nr. 820A-35732.

35

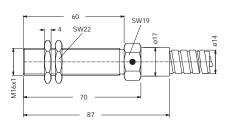
DSD 1605 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit: 5 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 1605.22 STV	374Z-04195	Cable 5 m	M16x1	215	-25+85	Standard
DSD 1605.22 SHV	374Z-04196	Cable 2 m	M16x1	155	-40+125	Standard
DSD 1605.22 ATV	374Z-04175	Connector	M16x1	95	-25+85	Standard
DSD 1605.22 AHV	374Z-04176	Connector	M16x1	95	-40+125	Standard
DSD 1605.22 MTV	374Z-04155	Protective hose 5 m	M16x1	925	-25+85	Standard

Type DSD 1605 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8....30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 5 Hz...20 kHz

Cable shield connected to the supply negative pole. Noise generator between Noise immunity

housing and electronics

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

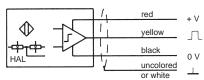
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module ≥ 0.5,

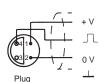
min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 0.5: 0.1...0.3 mm

Module 1.0: 0.1...1.5 mm ≥ Module 2.0: 0.1...2.0 mm


Output

Square wave signals from push-pull stage, D.C. coupled to the supply Signal output


(negative pole = reference voltage-), max. load 25 mA,

Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

IP68 (head), IP67 (cable connection), IP50 (jack connection). Protection class

Vibration immunity 5 g_a in the range 5...2000 Hz. Shock immunity 50 g, during 20 ms, half-sine wave.

Acc. to model overview. Operating temperature

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing .

Weight Acc. to model overview.

374E-63871, version with integral cable; 374E-63878, version with integral connector. Operating instructions

Versions

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer \emptyset = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Standard length for version ST: 5 m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), stranded wire

(Metal net insulated from housing), white.

Outer \emptyset = max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate Version MT

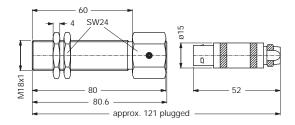
with PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant.

Outer $\emptyset = 14$ mm, bending radius = min. 40 mm, weight 130 g/m.

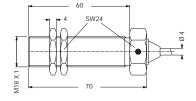
Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732.

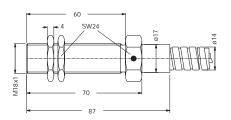
DSD 1805 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit: 5 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 1805.22 STV	374Z-04198	Cable 5 m	M18x1	220	-25+85	Standard
DSD 1805.22 SHV	374Z-04199	Cable 2 m	M18x1	160	-40+125	Standard
DSD 1805.22 ATV	374Z-04177	Connector	M18x1	100	-25+85	Standard
DSD 1805.22 AHV	374Z-04178	Connector	M18x1	100	-40+125	Standard
DSD 1805.22 MTV	374Z-04158	Protective hose 5 m	M18x1	930	-25+85	Standard

Type DSD 1805 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8...30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 5 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

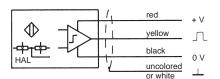
1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

Pole wheel 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4), 2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module \geq 0.5, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 0.5: 0.1...0.3 mm Module 1.0: 0.1...1.5 mm

≥ Module 2.0: 0.1...2.0 mm


Output

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply

(negative pole = reference voltage), max. load 25 mA, <u>Output voltage-HI:</u> > (supply voltage - 2.5 V) at I = 25 mA,

Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing .

Weight Acc. to model overview.

Operating instructions 374E-63871, version with integral cable; 374E-63878, version with integral connector.

Versions

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Standard length for version ST: 5 m.

Version SH <u>Teflon cable:</u> Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), stranded wire

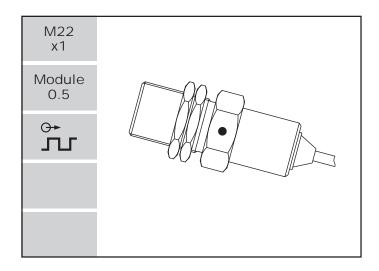
(Metal net insulated from housing), white.

Outer \emptyset = max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT <u>Protection hose over PVC cable:</u> Tube 825G-30924 made of profile milled steel plate

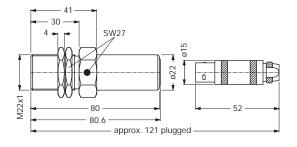
with PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant.


Outer \emptyset = 14 mm, bending radius = min. 40 mm, weight 130 g/m.

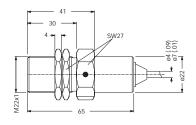
Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732.

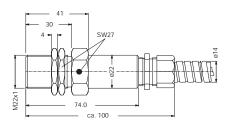
DSD 2205 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit: 5 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connections	Housing thread	Weight [g]	Operating [°C]	Notes
DSD 2205.22 STV	374Z-04201	Cable 5 m	M22x1	250	-25+85	Standard
DSD 2205.22 SHV	374Z-04202	Cable 2 m	M22x1	230	-40+125	Standard
DSD 2205.22 ATV	374Z-04179	Connector	M22x1	130	-25+85	Standard
DSD 2205.22 AHV	374Z-04180	Connector	M22x1	130	-40+125	Standard
DSD 2205.22 MTV	374Z-04161	Protective hose 5 m	M22x1	1000	-25+85	Standard

Type DSD 2205 Version A, S, M

Technical data

Supply

Power Supply Supply voltage: 8....30 V D.C., max. superimposed A.C. voltage 25 mVpp,

reverse polarity protection.

Current consumption: max. 15 mA (without load).

Input

Frequency range 5 Hz...20 kHz

Cable shield connected to the supply negative pole. Noise generator between Noise immunity

housing and electronics

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

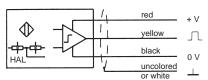
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred. Module ≥ 0.5,

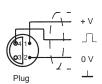
min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 0.5: 0.1...0.3 mm Module 1.0: 0.1...1.5 mm

≥ Module 2.0: 0.1...2.0 mm


Output

Square wave signals from push-pull stage, D.C. coupled to the supply Signal output


(negative pole = reference voltage), max. load 25 mA,

Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA, short circuit proof with reverse polarity protection.

Connections

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 5 g_a in the range 5...2000 Hz. Shock immunity 50 g, during 20 ms, half-sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screening and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

Weight Acc. to model overview.

374E-63871, version with integral cable; 374E-63878, version with integral connector. Operating instructions

Versions

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm2 (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer \emptyset = max. 4.2 mm, bending radius = min. 60 mm, weight 25 g/m.

Standard length for version ST: 5 m.

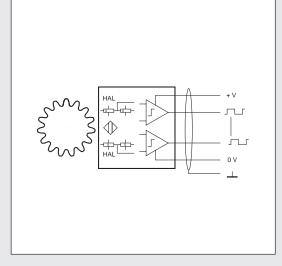
Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm2 (AWG 24), stranded wire

(Metal net insulated from housing), white.

Outer \emptyset = max. 4.0 mm, bending radius = min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate Version MT


with PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant.

Outer $\emptyset = 14$ mm, bending radius = min. 40 mm, weight 130 g/m.

Standard length for version MT: 5 m.

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732.

The DSD...W ferrostat sensor is suitable for generating 2 phase shifted speed dependent signals when used with a pole wheel (steel gear wheel, preferably with involute gear form) in order to measure speed and detect the direction of rotation. It exhibits static behaviour with guaranteed pulse generation down to 0 Hz.

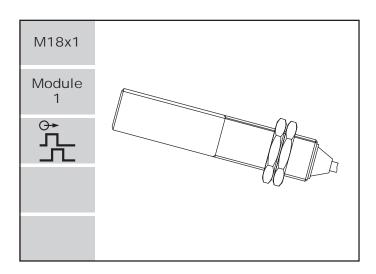
The sensor element comprises of 2 magnetically biased differential Hall sensors, followed by a short circuit proof amplifier. The sensor must be orientated to the pole wheel as shown in the corresponding drawing.

Connection

The sensor connections are sensitive to interference. The following 2 points should therefore be noted:

- 1) A screened 4core cable must be used for connections. The screen must be taken all the way to the terminal provided on the instrument and not earthed.
- 2) The sensor cables should be laid as far from large electrical machines as possible and must never be laid parallel to high current cables.

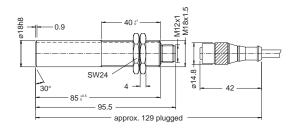
The maximum permissible cable length is a function of sensor supply voltage, cable routing along with cable capacitance and inductance and max. signal frequency.


In general it is advantageous to keep the distance between sensor and instrumentation to a minimum. The sensor cable may be lengthened via suitable IP 20 terminals and Jaquet cable p/n 824L-35053.

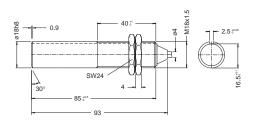
Installation

This sensor incorporates a differential Hall element. The housing must therefore be orientated to the pole wheel as shown in the dimensional diagram (note the flange pinorientation slot in the case of DSD..20W). Incorrect positioning of the sensor affects its correct operation and noise immunity.

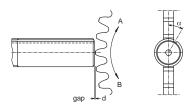
DSD 1810 A, S, M...W

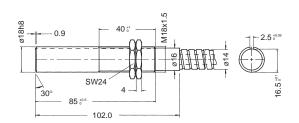


Features


- Double sensing system with amplifier
- Direction discrimination
- Static characteristic
- Lower frequency limit: 0 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A


Version S

Alignment angle

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSD 1810.11 STW	374Z-04317	Cable 5 m	M18x1	300	-25+85	Standard
DSD 1810.11 SHW	374Z-04318	Cable 2 m	M18x1	205	-40+125	Standard
DSD 1810.11 ATW	374Z-04319	Connector + cable 2 m	M18x1	210	-25+85	Standard
DSD 1810.11 AHW	374Z-04320	Connector + cable 2 m	M18x1	210	-40+125	Standard
DSD 1810.11 MTW	374Z-04324	Protective hose 5 m	M18x1	970	-25+85	Standard

Differential Ferrostat Sensor, dual sensing system

Type DSD 1810... W Version A, S, M

Technical Data

Supply

Power supply Supply voltage: 10...30 V D.C. protected against reverse polarity and transient overvoltages.

Current consumption: max. 35 mA (without load).

Input

Frequency range 0 Hz...20 kHz

With the cable shield connected to the supply negative pole, EMC protection prevents any Noise immunity (EMC)

malfunction of the sensor for the following conditions:

Transient non repetetive surges: between 0 V and housing, up to 1.5 kV peak with

10 kV/ μ s rise time during 1.5 μ s.

Electrical fast transients/bursts: coupled to sensor cable with a capacitive coupling clamp,

up to 2 kV peak, according to IEC 801-4, level 3.

<u>Damped resonance/1 MHz:</u> Capacitve coupled to signal- and supply cable up to 2.5 kV peak, acc.

to IEC255-4, level III.

Pole wheel Ferromagnetic toothed wheel (i.e. USt37-2) involute gear wheel, radial sensing,

eccentricity < 0.2 mm, min. tooth width 10 mm, side offset < 0.2 mm.

Pole wheel-sensor air gap at Module 1: 0.1...0.4 mm Module 2: 0.1...1.0 mm

Module 1: 12...**14**...16° Alignment angle α at

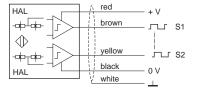
Module 2: 28...32...35°

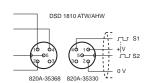
Output

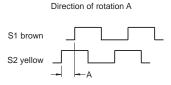
Signal outputs 2 square wave signals shifted by 90° ±60° resp. 8...41%,

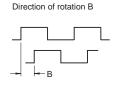
push-pull output stage, coupled to the supply (negative pole = reference voltage), max. load: 25mA. Output voltage-HI: Supply voltage - 1.5 V at I = 20 mA. Output voltage-LO: <1.5 V at I = 20 mA.

Duty cycle: 50% ±20%, dependent on direction of rotation, air gap and tooth design.


The phase shift between positive and negative-going edges of the output signals is not normally of


equal magnitude and depends on the duty cycle. Correct operation of subsequent rotation


direction discriminators is however always ensured.


Short circuit proof and protected against reverse polarity and transient overvoltages. Impulse diagram

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 3 g_n, 4...100 Hz.

Shock immunity 20 g_n, 6 ms during 11 ms half sine wave.

Operating temperature Acc. to model overview.

Climatic resistance Sensor function for 21 day damp heat, acc. to IEC 68-2-3, test Ca and storage for 1000 days

at +125 °C, acc. to IEC 68-2-2. test Ba.

Isolation Housing, cable shield and electronics galvanically isolated (500V/50 Hz/1 min).

Stainless steel 1.4305, frontside hermetically sealed and resistant against splashing water, oil, Housing

conducting carbon- or ferrous dust and salt mist. Electronic components potted in a chemical- and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

Operating instruction 374E-63892

Versions

Connection plug: Part nr. 820A-35330, incl. 2 m cable. Version A

Connector type: Part nr. 820A-35368.

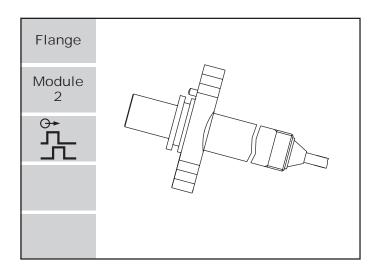
Teflon-Cable: Part nr. 824L-35053, 2 m, 4wire, 4x0.24 mm² (AWG24), stranded wire Version S

(metal net isolated from housing), white. Outer- $\emptyset = 4.0$ mm,

bending radius min. 30 mm, weight 32 g/m.

PVC cable with metal tube: Part nr. 825G-30924. Tube made of profile milled steel plate with Version M

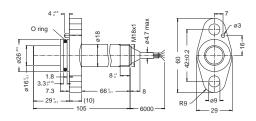
PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant. Outer Ø 14 mm,


bending radius min. 40 mm, weight 167 g/m.

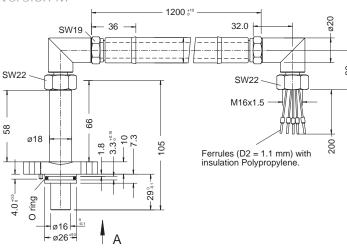
DSD

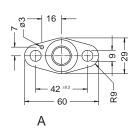
...W

DSD 1820 S, M... W



Features


- Double sensing system with amplifier
- Direction discrimination
- Static characteristic
- Lower frequency limit: 0 Hz
- Sensor housing must be aligned to the pole wheel
- For railway applications


Dimensions

Version S

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
	374Z-03980 374Z-04107	Cable 6 m Protective hose 1.2 m	Flange Flange	500 950	-40+125 -40+125	For railway vehicles For railway vehicles

Differential Ferrostat Sensor, dual sensing system

Type DSD 1820 ... W Version S, M

Technical Data

Supply

Power supply Supply voltage: 10...16 V D.C. protected against reverse polarity and transient overvoltages.

Current consumption: max. 75 mA (without load).

Input

Frequency range 0 Hz...40 kHz

Noise immunity (EMC) With the cable shield connected to the supply negative pole, EMC protection prevents any

malfunctions of the sensor for the following conditions: Transient non repetitive surges: between 0 V or the housing and signal- and power supply wiring up to 7 kV peak during 0.1 μs; 4 kV peak during 1 μs; 3 kV peak during 5 μs; 1.5 kV peak during 45 μs; 800 V peak during 100 μs.

Electrostatic discharge: into housing, cable shield and wires.

Up to 4 kV peak acc. to IEC 801-2, severity level 2.

Radiated electromagnetic field: up to 30 V/m, 50% AM, 1 kHz in the range of 1 MHz to 1000 MHz

acc. to IEC 801-3, severity level 3.

Electrical fast transients/bursts: coupled to Sensor cable with a capacitive coupling clamp.

Up to 4 kV peak, acc. to IEC 801-4, severity level 4.

Ferromagnetic toothed wheel (i.e. USt37-2) involute gear wheel, radial sensing, module 2, Pole wheel

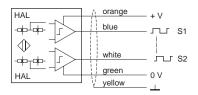
eccentricity < 0.2 mm, min. tooth width 10 mm, side offset < 0.2 mm. Pole wheel-sensor air gap Module 2: 0.5...1.5 mm

Output

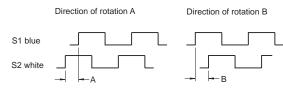
Signal outputs 2 square wave signals shifted by $90^{\circ} \pm 50\%$ ($\pm 45^{\circ}$),

push-pull output stage, coupled to the supply (negative pole = reference voltage), max. load: 25mA.

Output voltage-HI: >8.2 V at I = 20 mA. Output voltage-LO: <1.5 V at I = 20 mA.


Duty cycle: 50% (40...60%) dependent on direction of rotation, air gap and tooth design.

The phase shift between positive and negative-going edges of the output signals is not normally of


equal magnitude and depends on the duty cycle. Correct operation of subsequent rotation direction discriminators is however always ensured.

Short circuit proof and protected against reverse polarity and transient overvoltages.

Connection

Impulse diagram

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection). Vibration immunity 5 g_n, 10 ... 500 Hz, random noise. Shock immunity 100 g_n, 6 ms, acc. to IEC 68-2-27.

Operating temperature Acc. to model overview.

Climatic resistance Sensor function for 21 day damp heat, acc. to IEC 68-2-3, test Ca and storage for 1000 days

at +125 °C, acc. to IEC 68-2-2. test Ba.

Isolation Housing, cable shield and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel 1.4305, frontside hermetically sealed and resistant against splashing water, oil, conducting carbon- or ferrous dust and salt mist. Electronic components potted in a chemical- and

age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

Weight Acc. to model overview.

Operating instruction 374F-63721

Versions

Version S Teflon-Cable: Part nr. 824L-36222, 6 m, 4wire, 4x0.6 mm2 (AWG20), stranded wire

(metal net isolated from housing), white. Outer $\emptyset = 4.7$ mm,

bending radius min. 27 mm, weight 45 g/m.

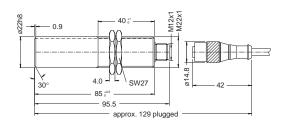
Version M Protective hose Kafon (Silicon) over teflon cable: fire retardant, low smoke, no PVC and non

halogen, oil proof, waterproof, outer Ø 20.5 mm, bending radius 26 mm static, 85 mm dynamic,

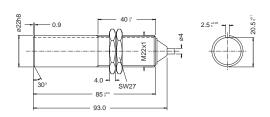
weight 300 g/m. Connection side with female fitting M16x1.5. Part nr. 825G-36402.

DSD ...W

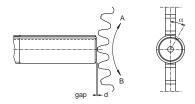
DSD 2210 A, S, M...W

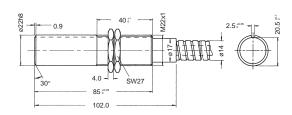


Features


- Double sensing system with amplifier
- Direction discrimination
- Static characteristic
- Lower frequency limit: 0 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions


Version A


Version S

Alignment angle

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSD 2210.11 STW	374Z-04321	Cable 5 m	M22x1	320	-25+85	Standard
DSD 2210.11 SHW	374Z-04322	Cable 2 m	M22x1	225	-40+125	Standard
DSD 2210.11 ATW	374Z-04113	Connector + cable 2 m	M22x1	230	-25+85	Standard
DSD 2210.11 AHW	374Z-04323	Connector+ cable 2 m	M22x1	230	-40+125	Standard
DSD 2210.11 MTW	374Z-04325	Protective hose 5 m	M22x1	990	-25+85	Standard

Differential Ferrostat Sensor, dual sensing system

Type DSD 2210...W Version A, S, M

Technical Data

Supply

Power supply Supply voltage: 10...30 V D.C. protected against reverse polarity and transient overvoltages.

Current consumption: max. 35 mA (without load).

Input

Frequency range 0 Hz...20 kHz

Noise immunity (EMC) With the cable shield connected to the supply negative pole, EMC protection prevents any

malfunctions of the sensor for the following conditions:

Transient non repetetive surges: between 0 V and housing, up to 1.5 kV peak with

10 kV/ μ s rise time during 1.5 μ s.

Electrical fast transients/bursts: coupled to sensor cable with a capacitive coupling clamp,

up to 2 kV peak, according to IEC 801-4, level 3.

<u>Damped resonance/1 MHz:</u> Capacitve coupled to signal- and supply cable up to 2.5 kV peak,

acc. to IEC255-4, level III.

Pole wheel Ferromagnetic toothed wheel (i.e. USt37-2) involute gear wheel, radial sensing,

eccentricity < 0.2 mm, min. tooth width 10 mm, side offset < 0.2 mm.

Pole wheel-sensor air gap at Module 1: 0.1...0.4 mm

Module 2: 0.1...1.0 mm Module 1: 12...14...16°

Alignment angle α at Module 1: 12...14...16° Module 2: 28...32...35°

Output

Signal outputs 2 square wave signals shifted by 90° ±60° resp. 8...41%,

push-pull output stage, coupled to the supply (negative pole = reference voltage),

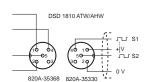
max. load: 25mA.

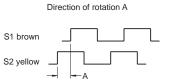
Output voltage-HI: Supply voltage - 1.5 V at I = 20 mA.

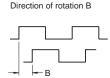
Output voltage-LO: <1.5 V at I = 20 mA.

<u>Duty cycle:</u> 50% ±20%, dependent on direction of rotation, air gap and tooth design.

The phase shift between positive and negative-going edges of the output signals is not normally of


Impulse diagram


equal magnitude and depends on the duty cycle. Correct operation of subsequent rotation


direction discriminators is however always ensured.

Short circuit proof and protected against reverse polarity and transient overvoltages.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP67 (jack connection).

Vibration immunity $3 g_n, 4...100 Hz$.

Shock immunity $20 g_n$, 6 ms during 11 ms half sine wave.

Operating temperature Acc. to model overview.

Climatic resistance Sensor function for 21 day damp heat, acc. to IEC 68-2-3, test Ca and storage-for 1000 days

at +125 °C, acc. to IEC 68-2-2. test Ba.

Isolation Housing, cable shield and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel 1.4305, frontside hermetically sealed and resistant against splashing water, oil,

conducting carbon- or ferrous dust and salt mist. Electronic components potted in a chemical- and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

Operating instruction 374E-63892

Versions

Version A Connection plug: Part nr. 820A-35330, incl. 2 m cable. Connector type: Part nr. 820A-35368.

Version S Teflon-Cable: Part nr. 824L-35053, 2 m, 4wire, 4x0.24 mm² (AWG24), stranded wire

(metal net isolated from housing), white. Outer $\emptyset = 4.0$ mm,

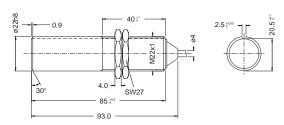
bending radius min. 30 mm, weight 32 g/m.

Version M PVC cable with metal tube: Part nr. 825G-30924. Tube made of profile milled steel plate with

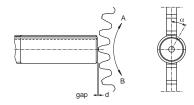
PVC cover, grey. Weather and waterproof, conditionally oil and acid resistant. Outer Ø 14 mm,

bending radius min. 40 mm, weight 130 g/m.

DSD 2220 S...W



Features


- Double sensing system with amplifier
- Direction discrimination
- Static characteristic
- Lower frequency limit: 0 Hz
- Sensor housing must be aligned to the pole wheel

Dimensions

Version S

Alignment angle

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSD 2220.00 SHW	374Z-04023	Cable 2 m	M22x1	245	-40+125	_

Differential Ferrostat Sensor, dual sensing system

Type DSD 2220...W Version S

Technical Data

Supply

Power supply Supply voltage: 10...16 V D.C. protected against reverse polarity and transient overvoltages.

Current consumption: max. 75 mA (without load).

Input

Frequency range 0 Hz....20 kHz

Noise immunity (EMC) With the cable shield connected to the supply negative pole, EMC protection prevents any

malfunctions of the sensor for the following conditions: Transient non repetitive surges: between 0 V or the housing and signal- and power supply wiring up to 7 kV peak during 0.1 μs; 4 kV peak during 1 μs; 3 kV peak during 5 μs; 1.5 kV peak during 45 μs; 800 V peak during 100 μs.

Electrostatic discharge: into housing, cable shield and wires. Up to 4 kV peak acc. to IEC 801-2, severity level 2.

Radiated electromagnetic field: up to 30 V/m, 50% AM, 1 kHz in the range of 1 MHz to 1000 MHz

acc. to IEC 801-3, severity level 3.

Electrical fast transients/bursts: coupled to Sensor cable with a capacitive coupling clamp.

Up to 4 kV peak, acc. to IEC 801-4, severity level 4.

Pole wheel Ferromagnetic toothed wheel (i.e. USt37-2) involute gear wheel, radial sensing, module 2,

eccentricity < 0.2 mm, min. tooth width 7 mm, side offset < 0.2 mm. Pole wheel-sensor air gap at Module 2: 0.5...1.2 mm Alignment angle α 15...32...35°

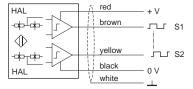
Output

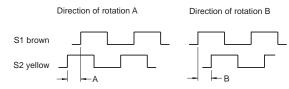
Signal outputs 2 square wave signals shifted by 90° ±45°,

push-pull output stage, coupled to the supply (negative pole = reference voltage), max. load: 25mA.

Output voltage-HI: >8.2 V at I = 20 mA. Output voltage-LO: <1.5 V at I = 20 mA.

Duty cycle: 50% (40...60%) dependent on direction of rotation, air gap and tooth design.


The phase shift between positive and negative-going edges of the output signals is not normally of equal magnitude and depends on the duty cycle. Correct operation of subsequent rotation


direction discriminators is however always ensured.

Short circuit proof and protected against reverse polarity and transient overvoltages.

Connection

Impulse diagram

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection). Vibration immunity 5 g., 10 ... 500 Hz, random noise. Shock immunity 100 g_a, 6 ms, acc. to IEC 68-2-27.

Operating temperature Acc. to model overview.

Climatic resistance Sensor function for 21 day damp heat, acc. to IEC 68-2-3, test Ca and storage for 1000 days

at +125 °C, acc. to IEC 68-2-2. test Ba.

Isolation Housing, cable shield and electronics galvanically isolated (500V/50 Hz/1 min).

Housing Stainless steel 1.4305, frontside hermetically sealed and resistant against splashing water, oil,

conducting carbon- or ferrous dust and salt mist. Electronic components potted in a chemical- and age-proof synthetic resin. Dimensions according to model overview and dimensional drawing.

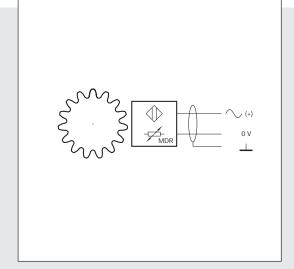
Weight Acc. to model overview

Operating instruction 374E-63778

Versions

Version S Teflon-Cable: Part nr. 824L-35053, 2 m, 4wire, 4x0.24 mm2 (AWG24), stranded wire

(metal net isolated from housing), white. Outer-Ø = 4.0 mm, bending radius min. 30 mm,


weight 32 g/m.

DSD

...W

DSF

DSF...Z ferrostat sensors are suitable for generating speed dependent signals when used with a pole wheel.

The sensing element is a magnetically biased magnetoresistive sensor whose resistance changes with magnetic field strength. The element is connected to the supply voltage via an external series resistor. An A.C. signal Ug is superimposed on the output as the pole wheel modulates the sensor's magnetic field. The D.C. component of the signal is capacitor decoupled in the instrument (note low end cut off frequency).

The static behaviour of these Ferrostat sensors allow their application as zero speed detectors.

The terms of the certificate of conformity must be adhered to when using Ex approved versions.

Connection

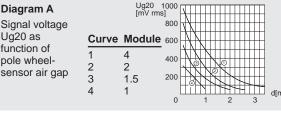
The sensor connections are sensitive to interference. The following 2 points should therefore be noted:

- 1) A screened 2 core cable must be used for connections. The screen must be taken all the way to the terminal provided on the instrument and not earthed.
- 2) The sensor cables should be laid as far from large electrical machines as possible and must never be laid parallel to high current cables.

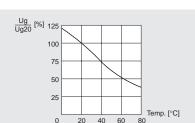
The maximum permissible cable length is a function of sensor supply voltage, cable routing along with cable capacitance and inductance and max. signal frequency. In general it is advantageous to keep the distance between sensor and instrumentation to a minimum. The sensor cable may be lengthened via suitable IP 20 terminals and Jaquet cable p/n 824L-30894.

Under optimum operating conditions the following cable lengths are permissible when using the recommended Jaquet cable:

100 m max cable length: Sensor frequency to 4 kHz 40 m max cable length: Sensor frequency to 10 kHz 20 m max cable length: Sensor frequency to 20 kHz


Installation

The sensor is mounted with its centre over the centre of the pole wheel. With gear wheels or slots and radial mounting, the sensor is normally fixed over the middle of the wheel. Dependent on the gear width, a degree of axial movement is permissible. The centre of the sensor must however remain a minimum of 3 mm from the edge of the wheel under all operating conditions. It is important to ensure a rigid, vibration free mounting of the sensor. Sensor vibration in relation to the pole wheel may induce additional pulses.


The sensors are insensitive to oil, grease etc. and can be used in arduous conditions. If the cable is to come into contact with aggressive materials, then teflon cable should be specified. The sensor should be installed with the smallest possible air gap. This air gap must however not allow the face of the sensor to come into contact with the pole wheel. As a guide, a sensor gap of 0.4 mm can be used. Please note however the relationship between gap and temperature. The air gap does not affect the calibration of the complete system.

CONNECTION AND INSTALLATION

Diagram A Signal voltage Ug20 as function of

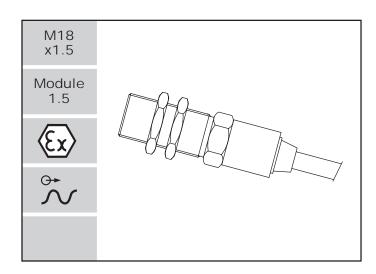
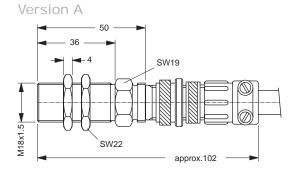
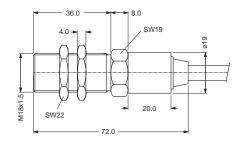
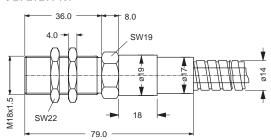


Diagram B Temperature dependancy


DSF 1815 A, S, M.Z


Features

- Without amplifier
- Static characteristic
- Lower Frequency limit: 0 Hz
- Sensor types Ex, intrinsically safe (zone 1) EEx ia II C T5/T6 available


Dimensions

Version S

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSF 1815.00 ATZ	304Z-03766	MS plug	M18x1.5	110	-25+85	previously FTG 285.01 A
DSF 1815.00 ATZ Ex	304Z-04007	MS plug	M18x1.5	110	acc. to certificate of conformity	previously FTG 285.01 A Ex
DSF 1815.00 STZ	304Z-03806	Wire 5 m	M18x1.5	480	-25+85	previously FTG 285.01 S
DSF 1815.00 STZ Ex	304Z-04008	Wire 5 m	M18x1.5	480	acc. to certificate of conformity	previously FTG 285.01 S Ex
DSF 1815.00 MTZ	304Z-04009	Protection hose 5 m	M18x1.5	1230	-25+85	previously FTG 285.01 SM
DSF 1815.00 MTZ Ex	304Z-04010	Protection hose 5 m	M18x1.5	1230	acc. to certificate of conformity	previously FTG 285.01 SM Ex

Ferrostat Sensor without amplifier

Type DSF 1815 Version A, S, M.Z

Technical Data

Supply

Power supply Supply voltage: $12 \text{ V} = \pm 10\%$ via 820Ω series resistor,

Current consumption: max. 12 mA.

Input

Frequency range Depending on cable length and cable type (see paragraph connection).

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

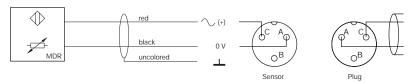
Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm or ≤ 20% of pole wheel-sensor gap.

Pole wheel-sensor gap acc. to diagram C.

Output

Signal output D.C. voltage of approx. +4 V with superimposed signal voltage Ug.


Diagram A displays the signal voltage Ug 20 as a function of pole wheel-sensor gap d with the pole

wheel module as a parameter, at an ambient temperature of 20 °C. Internal resistance: Without influence by pole wheel at 20 °C: 400 Ω ±25%. If influenced by the pole wheel, the resistance increases by 10...250%.

Temperature coefficient of the signal voltage Ug of the internal resistance: -2...-5%/°C. Diagram B (see section title) shows the signal voltage Ug 20 at +20 °C (as a percentage) as

a function of the temperature.

Connection

Housing is not connected with socket pin B (cable shield).

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 5 g_n in the range 5...2000 Hz.

Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable shielding and coil galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instruction 304E-63762

Versions

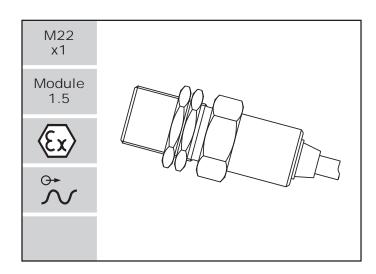
Version A Plug: Part nr. 820E-31142, at sensor.

Connecting plug (cable socket) Part nr. 820E-31141, at cable.

Version S PVC-wire: Part nr. 824G-30894, 2wire, 2x0.75 mm², wire stranded (metal net,

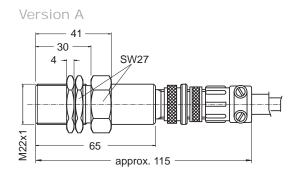
isolated from housing), grey. Outer Ø max 6.7 mm, bending radius min. 60 mm, weight 70 g/m.

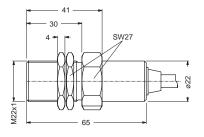
Version M


PVC cable with metal tube: Part nr. 825G-30924. Tube made of profile milled steel plate with PVC cover, grey. Weather and water proof, conditionally oil and acid resistant. Outer Ø 14 mm, bending

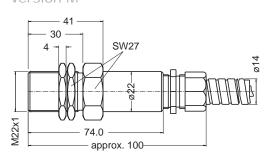
radius min. 40 mm, weight 130 g/m.

DSF


DSF 2215 A, S, M.Z


Features

- Without amplifier
- Static characteristic
- Lower Frequency limit: 0 Hz
- Sensor types Ex, intrinsically safe (zone 1) EEx ia II C T5/T6 available


Dimensions

Version S

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSF 2215.00 ATZ	304Z-03765	MS plug	M22x1	200	-25+85	previously FTG 1085.01 A
DSF 2215.00 ATZ Ex	304Z-03801	MS plug	M22x1	200	acc. to certificate of conformity	previously FTG 1085.01 A Ex
DSF 2215.00 STZ	304Z-03802	Wire 5 m	M22x1	550	-25+85	previously FTG 1085.01 S
DSF 2215.00 STZ Ex	304Z-03803	Wire 5 m	M22x1	550	acc. to certificate of conformity	previously FTG 1085.01 S Ex
DSF 2215.00 MTZ	304Z-03804	Protection hose 5 m	M22x1	1300	-25+85	previously FTG 1085.01 SM
DSF 2215.00 MTZ Ex	304Z-03805	Protection hose 5 m	M22x1	1300	acc. to certificate of conformity	previously FTG 1085.01 SM Ex

Ferrostat Sensor without amplifier

Type DSF 2215 Version A, S, M.Z

Technical Data

Supply

Power supply Supply voltage: $12 \text{ V} = \pm 10\%$ via 820Ω series resistor.

Current consumption: max. 12 mA.

Input

Frequency range Depending on cable length and cable type (see paragraph connection).

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

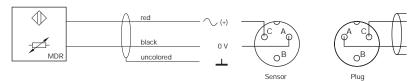
Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm or ≤ 20% of pole wheel-sensor gap.

Pole wheel-sensor gap acc. to diagram C.

Output

Signal output D.C. voltage of approx. +4 V with superimposed signal voltage Ug.


Diagram A displays the signal voltage Ug 20 as a function of pole wheel-sensor gap d with the pole

wheel module as a parameter, at an ambient temperature of 20 °C. Internal resistance: Without influence by pole wheel at 20 °C: 400 Ω ±25%. If influenced by the pole wheel, the resistance increases by 10...250%.

Temperature coefficient of the signal voltage Ug of the internal resistance: -2...-5%/°C. Diagram B (see section title) shows the signal voltage Ug 20 at +20 °C (as a percentage) as

a function of the temperature.

Connection

Shield to be connected to 0 V of power supply.

Housing is not connected with socket pin B (cable shield).

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable shielding and coil galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instruction 304E-63762

Versions

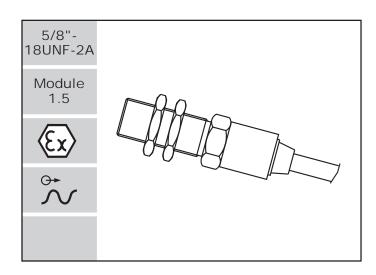
Version A Plug: Part nr. 820E-31142, at sensor.

Connecting plug (cable socket) Part nr. 820E-31141, at cable.

Version S PVC-wire: Part nr. 824G-30894, 2wire, 2x0.75 mm², wire stranded (metal net,

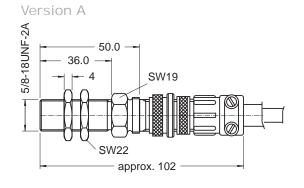
isolated from housing), grey. Outer Ø max 6.7 mm, bending radius min. 60 mm, weight 70 g/m.

Version M PVC cable with metal tube: Part nr. 825G-30924. Tube made of profile milled steel plate with PVC

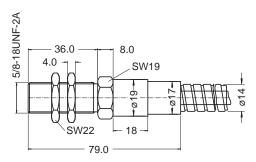

cover, grey. Weather and water proof, conditionally oil and acid resistant. Outer Ø 14 mm, bending

radius min. 40 mm, weight 130 g/m.

DSF


DSF EH15 A, S, M.Z

Features


- Without amplifier
- Static characteristic
- Lower Frequency limit: 0 Hz
- Sensor types Ex, intrinsically safe (zone 1) EEx ia II C T5/T6 available

Dimensions

Version S Version S 8.0 4.0 SW19 SW22 20.0 72.0

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSF EH15.00 ATZ	304Z-04011	MS plug	5/8"-18UNF-2A	80	-25+85	prev. FTG 2850.00 A
DSF EH15.00 ATZ Ex	304Z-04012	MS plug	5/8"-18UNF-2A	80	acc. to certificate of conformity	prev. FTG 2850.00 A Ex
DSF EH15.00 STZ	304Z-04013	Wire 5 m	5/8"-18UNF-2A	450	-25+85	prev. FTG 2850.00 S
DSF EH15.00 STZ Ex	304Z-03857	Wire 5 m	5/8"-18UNF-2A	450	acc. to certificate of conformity	prev. FTG 2850.00 S Ex
DSF EH15.00 MTZ	304Z-04014	Protection hose 5 m	5/8"-18UNF-2A	1200	-25+85	prev. FTG 2850.00 SM
DSF EH15.00 MTZ Ex	304Z-04015	Protection hose 5 m	5/8"-18UNF-2A	1200	acc. to certificate of conformity	prev. FTG 2850.00 SM Ex

Ferrostat Sensor without amplifier

Type DSF EH15 Version A, S, M.Z

Technical Data

Supply

Power supply Supply voltage: $12 \text{ V} = \pm 10\%$ via 820Ω series resistor,

Current consumption: max. 12 mA.

Input

Frequency range Depending on cable length and cable type (see paragraph connection).

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

 $2.5\ kV/1\ MHz$ damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

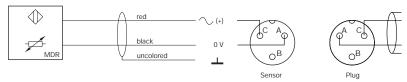
Module \geq 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm or ≤ 20% of pole wheel-sensor gap.

Pole wheel-sensor gap acc. to diagram .

Output

Signal output D.C. voltage of approx. +4 V with superimposed signal voltage Ug.


Diagram A displays the signal voltage Ug 20 as a function of pole wheel-sensor gap d with the pole

wheel module as a parameter, at an ambient temperature of 20 °C. Internal resistance: Without influence by pole wheel at 20 °C: 400 Ω ±25%. If influenced by the pole wheel, the resistance increases by 10...250%.

Temperature coefficient of the signal voltage Ug of the internal resistance: -2...-5%/°C. Diagram B (see section title) shows the signal voltage Ug 20 at +20 °C (as a percentage) as a

function of the temperature.

Connection

Housing is not connected with socket pin B (cable shield).

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 5 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable shielding and coil galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instruction 304E-63762

Versions

Version A Plug: Part nr. 820E-31142, at sensor.

Connecting plug (cable socket) Part nr. 820E-31141, at cable.

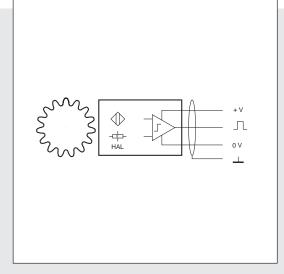
Version S PVC-wire: Part nr. 824G-30894, 2wire, 2x0.75 mm², wire stranded (metal net,

insulated from housing), grey. Outer Ø max 6.7 mm, bending radius min. 60 mm, weight 70 g/m.

Version M PVC cable with metal tube: Part nr. 825G-30924. Tube made of profile milled steel plate with PVC

cover, grey. Weather and water proof, conditionally oil and acid resistant. Outer Ø 14 mm, bending

radius min. 40 mm, weight 130 g/m.


DSF

59

Ferrostat sensor with amplifier

DSF...V

DSF...V ferrostat sensors are suitable for generating speed dependent signals when used with a pole wheel.

They exhibit dynamic behaviour whereby operation down to 0.05 Hz is guaranteed.

The sensing element is a magnetically biased Hall sensor followed by a short circuit proof amplifier (version V).

-UNCTION

DSF ...V

Connection

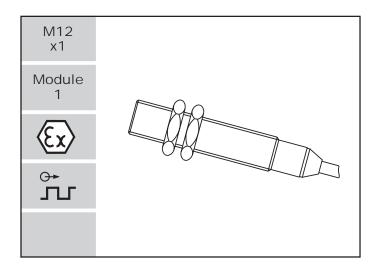
The sensor connections are sensitive to interference. The following 2 points should therefore be noted:

- 1) A screened 3 core cable must be used for connections. The screen must be taken all the way to the terminal provided on the instrument and not earthed.
- 2) The sensor cables should be laid as far from large electrical machines as possible and must never be laid parallel to high current cables.

The maximum permissible cable length is a function of sensor supply voltage-, cable routing along with cable capacitance and inductance.

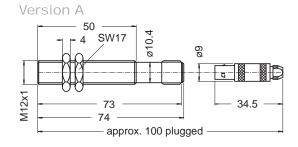
In general it is advantageous to keep the distance between sensor and instrumentation to a minimum. The sensor cable may be lengthened via suitable IP 20 terminals and Jaquet S3 cable p/n 824L-31081.

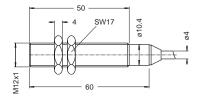
Installation


The sensor is mounted with its centre over the centre of the pole wheel. With gear wheels or slots and radial mounting, the sensor is normally fixed over the middle of the wheel. Dependent on the gear width, a degree of axial movement is permissible. The centre of the sensor must however remain a minimum of 3 mm from the edge of the wheel under all operating conditions.

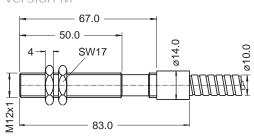
It is important to ensure a rigid, vibration free mounting of the sensor. Sensor vibration in relation to the pole wheel may induce additional pulses.

The sensors are insensitive to oil, grease etc. and can be used in arduous conditions. If the cable is to come into contact with aggressive materials, then teflon cable should be specified. The sensor should be installed with the smallest possible air gap. This air gap must however not allow the face of the sensor to come into contact with the pole wheel. The air gap does not affect the calibration of the complete system.


DSF 1210 A, S, M


Features

- With amplifier
- Dynamic characteristic
- Lower frequency limit 0.05 Hz
- Available as model DSF 1210.00..V Ex in intrinsically safe class EEx ia IIC T6-T1 (zone 1)
- Available in intrinsically safe class EEx ia I (with exception of types with integral connector) e.g. for the mining industry


Dimensions

Version S

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]
DSF 1210.00 AHV	374Z-03867	Plug	M12x1	35	-40+125
DSF 1210.00 AHV Ex	374Z-03823	Plug	M12x1	35	certificate of conformity
DSF 1210.00 ATV	374Z-03868	Plug	M12x1	35	-25+85
DSF 1210.00 MTV	374Z-03970	Protection hose 5m	M12x1	495	-25+85
DSF 1210.00 SHV	374Z-03869	Wire 2 m	M12x1	100	-40+125
DSF 1210.00 SHV	374Z-03880	Wire 5 m	M12x1	190	-40+125
DSF 1210.00 SHV Ex	374Z-03788	Wire 2 m	M12x1	100	certificate of conformity
DSF 1210.00 STV	374Z-03870	Wire 5 m	M12x1	160	-25+85
DSF 1210.00 STV Ex	374Z-03789	Wire 5 m	M12x1	160	certificate of conformity

Ferrostat Sensor with amplifier

Type DSF 1210 Version A, S, M

Technical Data

Supply

Power supply Supply voltage: 10...30 V D.C., (Ex 8...28 V D.C.), max. superimposed A.C. voltage of 25 mVpp,

protected against reverse polarity. Current consumption: max. 14 mA (without load).

Input

Frequency range 0.05 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred.

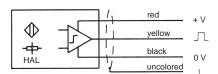
Module ≥1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.2...1.0 mm

Module 2: 0.2...2.5 mm ≥ Module 4: 0.2...4.5 mm

Output


Signal output Square wave signals from push-pull stage-, D.C. coupled to the supply

(negative pole = reference voltage), max. load 25 mA,

Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA,

short circuit proof and protected against reverse polarity.

Connection

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection, IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half sine wave.

Operating temperature Acc. model overview.

Insulation Housing, cable shield and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight Acc. model overview

Operating instruction 374E-63710 version with integral connector, 374E-63709 version with integral cable, 374E-63901

intrinsically safe version.

Versions

Version AConnection type: Part nr. 820A-35922; Connection plug: Part nr. 820A-35921.Version STPVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), wire stranded

(thermoplastic screening with continuity conductor, isolated from the housing), grey.

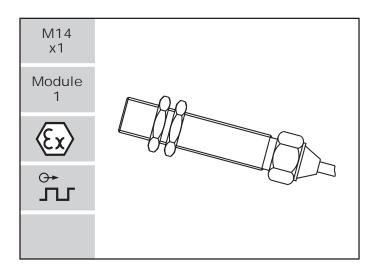
Outer Ø max. 4.2 mm, Bending radius min. 60 mm, weight 25 g/m.

Version SH <u>Teflon cable:</u> Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), wire stranded

(metal net, insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

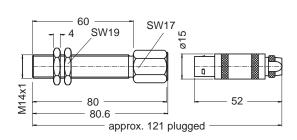
Version MT Protection hose over PVC cable: Tube 825G-36148 made of profile milled steel plate with PUR


cover, blue. Weather and waterproof, conditionally oil and acid resistant.

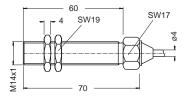
Outer \varnothing 10 mm, bending radius min. 32 mm, weight 75 g/m.

DSF ...V

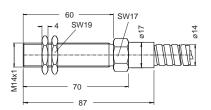
DSF 1410 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit 0.05 Hz
- Available as model DSF 1410.00..V Ex in intrinsically safe class EEx ia IIC T6-T1 (zone 1)
- Available in intrinsically safe class EEx ia I (with exception of types with integral connector) e.g. for the mining industry

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSF 1410.00 AHV	374Z-03940	Connector	M14x1	90	-40+125	_
DSF 1410.00 ATV	374Z-03939	Connector	M14x1	90	-25+85	_
DSF 1410.00 MTV	374Z-03972	Protection hose 5m	M14x1	835	-25+85	_
DSF 1410.00 SHV	374Z-03927	Cable 2 m	M14x1	150	-40+125	_
DSF 1410.00 SHV	374Z-03928	Cable 5 m	M14x1	240	-40+125	_
DSF 1410.00 STV	374Z-03925	Cable 5 m	M14x1	210	-25+85	_
DSF 1410.00 AHV Ex	374Z-03994	Connector	M14x1	90	certificate of confirmity	
DSF 1410.00 SHV Ex	374Z-03992	Cable 2 m	M14x1	150	certificate of confirmity	
DSF 1410.00 STV Ex	374Z-03993	Cable 5 m	M14x1	210	certificate of confirmity	

Ferrostat Sensor with amplifier

Type DSF 1410 Version A, S, M

Technical Data

Supply

Power supply Supply voltage: 10...30 V D.C., (Ex 8...28 V DC), max. superimposed A.C. voltage of 25 mVpp,

protected against reverse polarity. Current consumption: max. 14 mA (without load).

Input

Frequency range 0.05 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

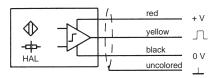
Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred.

Module ≥1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

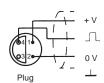
eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1:

Module 1: 0.2...1.0 mm Module 2: 0.2...2.5 mm ≥ Module 4: 0.2...4.5 mm


Output

Pole wheel


Signal output Square wave signals from push-pull stage, D.C. coupled to the supply

(negative pole = reference voltage), max. load 25 mÅ, <u>Output voltage-HI:</u> > (supply voltage - 2.5 V) at I = 25 mÅ, <u>Output voltage-LO:</u> < 1.5 V at I = 25 mÅ, short circuit proof and protected against reverse polarity.

Connection

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP (jack connection).

Vibration immunity 5 g_n in the range 5...2000 Hz.

Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. model overview.

Insulation Housing, cable shield and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight Acc. model overview.

Operating instruction 374E-63710 version with integral connector, 374E-63709 version with integral cable,

374E-63901 Ex-version.

Versions

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 829A-35732.

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), wire stranded

<u>PVC cable:</u> Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), wire stranded (thermoplastic screening with continuity conductor, insulated from the housing), grey.

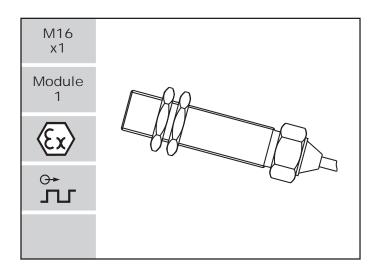
Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 25 g/m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), wire stranded

(metal net, insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

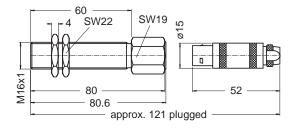
Version MT Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate with PVC


cover, grey. Weather and waterproof, conditionally oil and acid resistant.

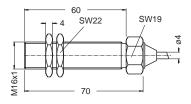
Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

...V

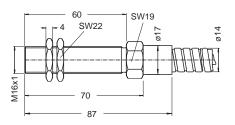
DSF 1610 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit 0.05 Hz
- Available as model DSF 1610.00..V Ex in intrinsically safe class EEx ia IIC T6-T1 (zone 1)
- Available in intrinsically safe class EEx ia I (with exception of types with integral connector) e.g. for the mining industry

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]
DSF 1610.00 AHV	374Z-03942	Connector	M16x1	95	-40+125
DSF 1610.00 ATV	374Z-03941	Connector	M16x1	95	-25+85
DSF 1610.00 MTV	374Z-03974	Protection hose 5 m	M16x1	840	-25+85
DSF 1610.00 SHV	374Z-03932	Cable 2 m	M16x1	155	-40+125
DSF 1610.00 SHV	374Z-03933	Cable 5 m	M16x1	245	-40+125
DSF 1610.00 STV	374Z-03930	Cable 5 m	M16x1	215	-25+85
DSF 1610.00 AHV Ex	374Z-03998	Connector	M16x1	95	certificate of conformity
DSF 1610.00 SHV Ex	374Z-03996	Cable 2 m	M16x1	155	certificate of conformity
DSF 1610.00 STV Ex	374Z-03997	Cable 5 m	M16x1	215	certificate of conformity

Ferrostat Sensor with amplifier

Type DSF 1610 Version A, S, M

Technical Data

Supply

Power supply Supply voltage: 10...30 V D.C., (Ex 8...28 V DC), max. superimposed A.C. voltage of 25 mVpp,

protected against reverse polarity. Current consumption: max. 14 mA (without load).

Input

Frequency range 0.05 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred.

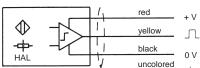
Module ≥1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

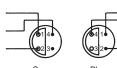
eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.2...1.0 mm

Module 2: 0.2...2.5 mm ≥ Module 4: 0.2...4.5 mm

Output


Signal output Square wave signals from push-pull stage, D.C. coupled to the supply


(negative pole = reference voltage), max. load 25 mA,

Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA,

short circuit proof and protected against reverse polarity.

Connection

→ Unicolored → Sensor Plug

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connector), IP50 (jack connector).

Vibration immunity 5 g_n in the range 5...2000 Hz.

Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. model overview

Insulation Housing, cable shield and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight Acc. model overview.

Operating instruction 374E-63710 version with integral connector, 374E-63709 version with integral cable,

374E-63901 Ex-Version.

Versions

 Version A
 Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732.

 Version ST
 PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), wire stranded (thermoplastic screening with continuity conductor, insulated from the housing), grey.

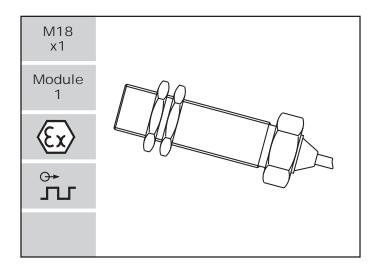
Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 25 g/m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), wire stranded

(metal net, insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

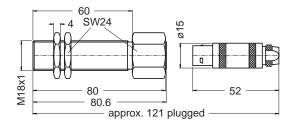
Version MT Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate with PVC


cover, grey. Weather and waterproof, conditionally oil and acid resistant.

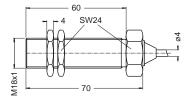
Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

DSF ...V

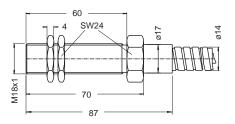
DSF 1810 A, S, M



Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit 0.05 Hz
- Available as model DSF 1810.00..V Ex in intrinsically safe class EEx ia IIC T6-T1 (zone 1)
- Available in intrinsically safe class EEx ia I (with exception of types with integral connector) e.g. for the mining industry

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]
DSF 1810.00 AHV	374Z-03887	Connector	M18x1	100	-40+125
DSF 1810.00 AHV Ex	374Z-03824	Connector	M18x1	100	certificate of conformity
DSF 1810.00 ATV	374Z-03886	Connector	M18x1	100	-25+85
DSF 1810.00 MTV	374Z-03976	Protection hose 5 m	M18x1	845	-25+85
DSF 1810.00 SHV	374Z-03871	Cable 2 m	M18x1	160	-40+125
DSF 1810.00 SHV	374Z-03882	Cable 5 m	M18x1	250	-40+125
DSF 1810.00 SHV Ex	374Z-03799	Cable 2 m	M18x1	160	certificate of conformity
DSF 1810.00 STV	374Z-03872	Cable 5 m	M18x1	220	-25+85
DSF 1810.00 STV Ex	374Z-03798	Cable 5 m	M18x1	220	certificate of conformity

Ferrostat Sensor with amplifier

Type DSF 1810 Version A, S, M

Technical Data

Supply

Power supply Supply voltage: 10...30 V D.C., (Ex 8...28 V D.C.), max. superimposed A.C. voltage of 25 mVpp,

protected against reverse polarity. Current consumption: max. 14 mA (without load).

Input

Frequency range 0.05 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4). Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred.

Module ≥1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

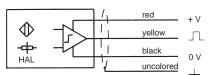
eccentricity < 0.2 mm.

Pole wheel-sensor gap with

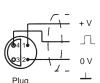
Module 1: 0.2...1.0 mm Module 2: 0.2...2.5 mm > Module 4: 0.2...4.5 mm

Output

Pole wheel


Signal output Square wave signals from push-pull stage, D.C. coupled to the supply

(negative pole = reference voltage), max. load 25 mA,


Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA,

short circuit proof and protected against reverse polarity.

Connection

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 5 g in the range 5...2000 Hz. Shock immunity 50 g_a during 20 ms, half sine wave.

Operating temperature Acc. model overview.

Insulation Housing, cable shield and electronics galvanically isolated (500 V/50 Hz/1 min).

Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-Housing

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight

Operating instruction 374E-63710 version with integral connector, 374E-63709 version with integral cable, 374E-63901

intrinsically safe version.

Versions

Version A Connection type: Part nr. 820A-35731; Connection plug: Part nr. 820A-35732. PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), wire stranded Version ST

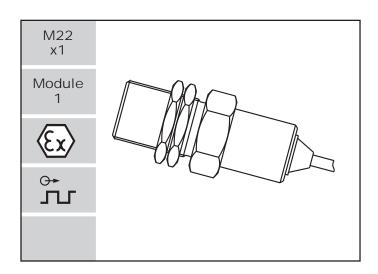
(thermoplastic screening with continuity conductor, insulated from the housing), grey. Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 25 g/m.

Version SH

Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), wire stranded

(metal net, insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

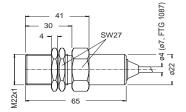

Version MT Protection hose over PVC cable: Tube 825G-30924 made of profile milled steel plate with PVC

cover, grey. Weather and waterproof, conditionally oil and acid resistant.

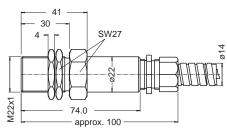
Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

DSF 2210 A, S, M

Features


- With amplifier
- Dynamic characteristic
- Lower frequency limit 0.05 Hz
- Available as model DSF 2210.00..V Ex in intrinsically safe class EEx ia IIC T6-T1 (zone 1)
- Available in intrinsically safe class EEx ia I (with exception of types with integral connector) e.g. for the mining industry

Dimensions


Version A

Version S

Version M

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]
DSF 2210.00 AHV	374Z-03873	Connector	M22x1	130	-40+125
DSF 2210.00 AHV Ex	374Z-03825	Connector	M22x1	130	certificate of conformity
DSF 2210.00 ATV	374Z-03888	Connector	M22x1	130	-25+85
DSF 2210.00 MTV	374Z-03978	Protection hose 5 m	M22x1	870	-25+85
DSF 2210.00 SHV	374Z-03874	Cable 2 m	M22x1	190	-40+125
DSF 2210.00 SHV	374Z-03877	Cable 5 m	M22x1	280	-40+125
DSF 2210.00 SHV Ex	374Z-03797	Cable 2 m	M22x1	190	certificate of conformity
DSF 2210.00 STV	374Z-03875	Cable 5 m	M22x1	250	-25+85
DSF 2210.00 STV Ex	374Z-03796	Cable 5 m	M22x1	250	certificate of conformity
DSF 2210.87 STV	374Z-03853	Cable 5 m	M22x1	500	-25+85 FTG 1087.00 S
DSF 2210.87 STV Ex	374Z-03826	Cable 5 m	M22x1	500	certificate of conformity FTG 1087.00 S Ex

Ferrostat Sensor with amplifier

Type DSF 2210 Version A, S, M

Technical Data

Supply

Power supply Supply voltage: 10....30 V D.C., (Ex 8...28 V D.C.), max. superimposed A.C. voltage of 25 mVpp,

protected against reverse polarity. Current consumption: max. 14 mA (without load).

Input

Frequency range 0.05 Hz...20 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4). Ferromagnetic toothed wheel, i.e. Ust37-2, involute gear form preferred.

Module ≥1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

Pole wheel-sensor gap with Module 1: 0.2...1.0 mm

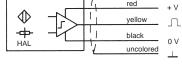
Module 2: 0.2...2.5 mm ≥ Module 4: 0.2...4.5 mm

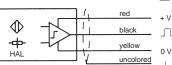
Output

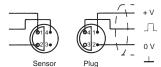
Pole wheel

Signal output Square wave signals from push-pull stage, D.C. coupled to the supply

(negative pole = reference voltage), max. load 25 mA,


Output voltage-HI: > (supply voltage - 2.5 V) at I = 25 mA, Output voltage-LO: < 1.5 V at I = 25 mA,


short circuit proof and protected against reverse polarity.


Connection

FTG 1087

DSF

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity $5 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half sine wave.

Operating temperature Acc. model overview.

Insulation Housing, cable shield and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight Acc. model overview

Operating instruction 374E-63710 version with integral connector, 374E-63709 version with integral cable, 374E-63901

intrinsically safe version.

Versions

Version A Connection type: Part nr. 820A -35731; Connection plug: Part nr. 820A-35732.

Version ST PVC cable: Part nr. 824L-35665, 3wire, 3 x 0.22 mm² (AWG 24), wire stranded

(thermoplastic screening with continuity conductor, insulated from the housing), grey,

Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 25 g/m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24), wire stranded

(metal net, insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

Version MT <u>Protection hose over PVC cable:</u> Tube 825G-30924 made of profile milled steel plate with PVC

cover, grey. Weather and waterproof, conditionally oil and acid resistant.

Outer Ø 14 mm, Bending radius min. 40 mm, weight 130 g/m.

FTG 1087 PVC cable: Part nr. 824L-31081, 3wire, 3 x 0.75 mm², 5 m long, wire stranded

(metal net, insulated from the housing), grey.

Outer Ø max. 7.4 mm, bending radius min. 110 mm, weight 80 g/m.

DSF ...V

Electromagnetic Sensor without line amplifier

DSE...Z

Function, Design

The DSE series electromagnetic sensors essentially consist of an iron core with an inductive coil, behind which sits a permanent magnet. A ferromagnetic pole wheel passing the sensor head then influences the magnetic field, resulting in an A.C. voltage being induced in the coil. The induced voltage is proportional to the rate of flux change and hence pole wheel speed.

The level of output voltage is dependent on the sensor to pole wheel air gap and the size and form of the pole wheel. Additionally, the output level is as a first approximation proportional to the angular speed of the pole wheel and hence of the shaft being measured.

Electromagnetic sensors do not require an external supply in order to generate a speed signal. They are available in various housings and can be used at high temperature to 250 deg C and under high radiation levels due to their purely electromechanical design. They can therefore generally be used wherever the speed to be measured or controlled is a minimum of circa 10 rpm. Applications where they should not be used would be for zero speed and direction detection.

Signal output

In every speed measuring chain, care is needed to ensure that the sensor signal level exceeds the required instrument trigger level under all operating conditions. It is sufficient to verify that the sensor signal at the lowest operating speed is adequate for the instrumentation. See Table 1 Technical Data and diagrams A1,2,3 together with B1.2.

Column 2, Table 1 gives the sensor voltage Un for each sensor under standard measurement conditions. This corresponds to a standard pole wheel (column 3) angular speed of 5m/s and an air gap of 0.1mm.

The relationship between sensor voltage and angular speed is approximately linear and so the actual sensor voltage for a given pole wheel having diameter Dp and speed (n) can be calculated as follows:

$$Ug0,1 = \frac{Un \times n \times Dp \times \pi}{60 \times 5}$$

Ug0,1 = Sensor voltage (Vpp) at air gap d = 0.1 mm

where

Un = Sensor voltage (Vpp) under standard measurement conditions

n = Pole wheel speed in rpm

Dp = Pole wheel diameter in metres

Diagrams A1...3 provide an approximation of sensor voltage for pole wheel to sensor air gap d other than 0.1 mm. Expressed as a percentage-of the reference voltage at d = 0.1 mm, the voltage Ug can be read for any air gap d. The pole wheel module should be within the range or greater than that shown in column 4. It should be noted that the sensor voltage with a smaller pole wheel module than the given standard, especially with large air gaps, will be considerably lower than under standard measurement conditions. Larger than standard pole wheel modules generally provide only a small output voltage advantage-but may have other mechanical advantages.

Determination of minimum speed

Diagrams B and columns 5...8 in the "Technical Data" table simplify the pole wheel selection parameters (module and diameter) along with the air gap d and allow verification of the suitability of the chosen configuration for a particular application.

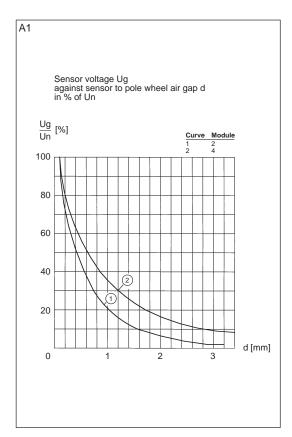
Diagrams B further provide the minimum detectable speed N100 as a function of the pole wheel to core gap Dk for various combinations of pole wheel module and sensor type. For this purpose the instrument sensitivity is taken to be 50mVrms. The curves are valid for pole wheel diameters of 100mm and represent a local constant sensor voltage of 50mVrms corresponding to 140 mVpp.

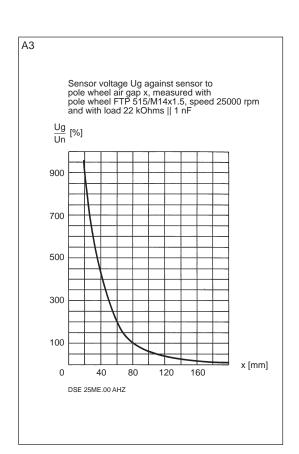
To determine the min. measuring speed N100 for a given pole wheel to core gap Dk for other types, multiply the value from the curve for N100 by the factor Kn (Table 1 column 5).

The generally applicable formular to determine the minimum measurable speed Nmin for any sensor type and known values for pole wheel diameter Dp (m) and gap Dk is:

Nmin (Dk) = $N100 \times Kn \times 0.1Dp$

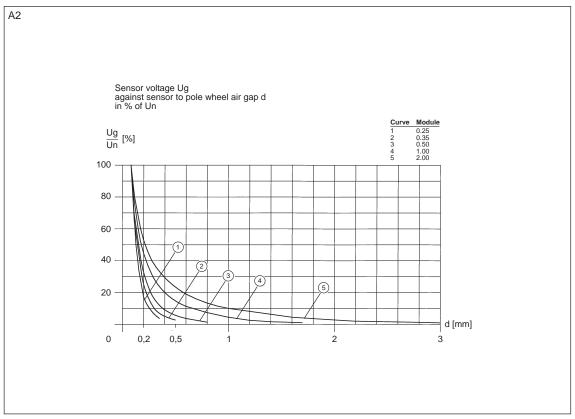
To determine Nmin for a given sensor air gap d, the relationship Dk = f(d) (column 6) for the sensor in question must be factored in finally the calculated value for Nmin will need to be adjusted by the ratio A (mVrms)/50 mVrms for instrument sensitivity other than the 50 mV reference value.

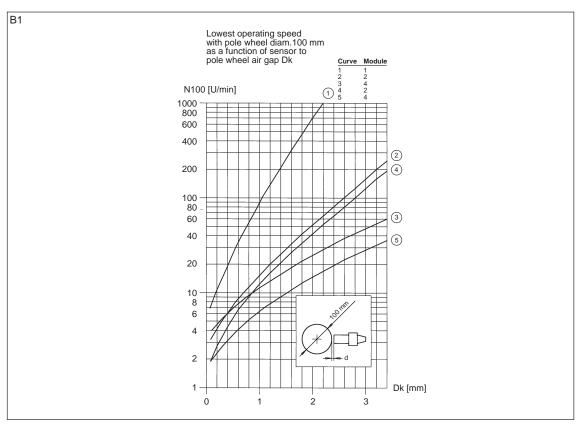


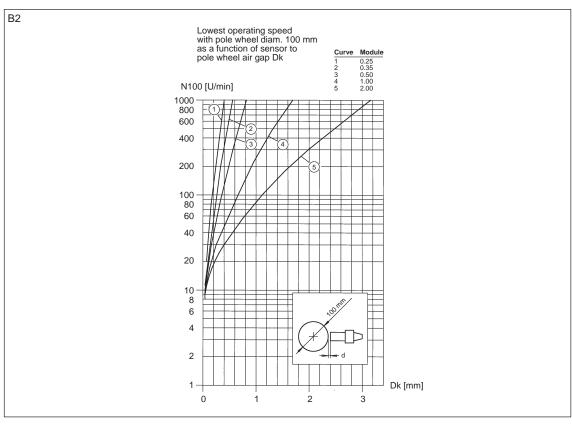

Table 1 Technical Data (overview)

Туре	Output- voltage	Module		Factor Kn	Relation- ship	Characteristic		Coil Resis-	Coil Induc-	Core Ø
	Un ¹) [Vpp]	Standard Pole wheel			DK=f(d) [mm]	Diag. A Nr.	Diag. B Nr.	tance Ri [Ω] ±20%	tance Li [mH] ±20%	[mm]
DSE 0603.00SHZ	10	0.5	0.25>2	1.0	Dk = d	A2/all	B2/all	3900	550	0.6/1.5
DSE 1010.00STZ	18	2	1>4	2.1	Dk = d	A1/1	B1/1,2,3	830	170	2.7
DSE 1010.00ZTZ	18 11	2	1>4	2.1	Dk = d $Dk = d+0.2$	A1/1 A1/1	B1/1,2,3 B1/1,2,3	830 830	170 170	2.7
DSE AD10.00AHZ DSE AD10.00SHZ	11	2	1>4	2.1	Dk = d+0.2 Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	830	170	2.7
DSE 1210.01AHZ	10	2	1>4	3.8	Dk = d	A1/1	B1/1,2,3	830	170	Yoke
DSE 1210.01SHZ DSE 1210.02AHZ	10 11	2 2	1>4 1>4	3.8 2.1	Dk = d Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	830 830	170 170	Yoke 2.7
DSE 1210.02SHZ	11	2	1>4	2.1	Dk = d+0.2	A1/1	B1/1,2,3	830	170	2.7
DSE 1210.06AHZ	11	2	1>4	2.1	Dk = d+0.2	A1/1	B1/1,2,3	830	170	2.7
DSE 1210.00 SHZ DSE 1210.00 AHZ	11 11	2 2	1>4 1>4	2.1 2.1	Dk = d+0.2 Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	830 830	170 170	2.7 2.7
DSE 1210.00 STZ	11	2	1>4	2.1	Dk = d+0.2	A1/1	B1/1,2,3	830	170	2.7
DSE 1210.00 ATZ DSE 1210.00 MTZ	11 11	2 2	1>4 1>4	2.1 2.1	Dk = d+0.2 Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	830 830	170 170	2.7 2.7
DSE 1410.00 ATZ	11	2	1>4	2.1	Dk = d+0.2	A1/1	B1/1,2,3	830	170	2.7
DSE 1410.00 AHZ	11	2	1>4	2.1	Dk = d+0.2	A1/1	B1/1,2,3	830	170	2.7
DSE 1410.00 STZ DSE 1410.00 SHZ	11 11	2 2	1>4 1>4	2.1 2.1	Dk = d+0.2 Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	830 830	170 170	2.7 2.7
DSE 1410.00 MTZ	11	2	1>4	2.1	Dk = d+0.2	A1/1	B1/1,2,3	830	170	2.7
DSE 1610.01 AHZ	27	2 2	1>4 1>4	0.9	Dk = d+0.2	A1/1	B1/1,2,3	900	310	2.7
DSE 1610.01 SHZ DSE 1610.00 ATZ	27 27	2	1>4	0.9 0.85	Dk = d+0.2 Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 900	310 310	2.7 2.7
DSE 1610.00 AHZ	27	2	1>4	0.9	Dk = d+0.2	A1/1	B1/1,2,3	900	310	2.7
DSE 1610.00 STZ DSE 1610.00 SHZ	27 27	2	1>4 1>4	0.85 0.9	Dk = d+0.2 Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 900	310 310	2.7 2.7
DSE 1610.00 MTZ	27	2	1>4	0.85	Dk = d+0.2	A1/1	B1/1,2,3	900	310	2.7
DSE EH10.00 STZ		2	1>4	0.85	Dk = d+0.2	A1/1	B1/1,2,3	900	310	2.7
DSE EH10.00 MTZ DSE EH10.00 ATZ	45 45	2 2	1>4 1>4	0.85 0.85	Dk = d+0.2 Dk = d+0.2	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 900	310 310	2.7 2.7
DSE EH10.00 SHZ		2	1>4	0.9	Dk = d+0.2	A1/1	B1/1,2,3	900	310	2.7
DSE EH10.00 AHZ		2	1>4	2.1	Dk = d+0.2 $Dk = d$	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 830	310 170	2.7
DSE 1810.09 ATZ	45	2	1>4	0.85	Dk = d	A1/1	B1/1,2,3	900	310	2.7
DSE 1810.09 STZ	45	2	1>4	0.85	Dk = d	A1/1	B1/1,2,3	900	310	2.7
DSE 1810.09 MTZ DSE 1810.11 ATZ	45 45	2 2	1>4 1>4	0.85 0.85	Dk = d Dk = d	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 900	310 310	2.7 2.7
DSE 1810.11 AHZ	23	2	1>4	0.9	Dk = d+0.3	A1/1	B1/1,2,3	1150	490	2.7
DSE 1810.11 STZ DSE 1810.11 SHZ	45 23	2 2	1>4 1>4	0.85 0.9	Dk = d $Dk = d+0.3$	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 1150	310 490	2.7 2.7
DSE 1810.11 MTZ	45	2	1>4	0.85	Dk = d	A1/1	B1/1,2,3	900	310	2.7
DSE 1820.11 ATZ	58	4	2>8	1.0	Dk = d	A1/2	B1/4,5	900	360	5.0
DSE 1820.11 AHZ DSE 1820.11 STZ	36 58	4 4	2>8 2>8	0.9 1.0	Dk = d+0.3 Dk = d	A1/2 A1/2	B1/4,5 B1/4,5	1100 900	455 360	5.0 5.0
DSE 1820.11 SHZ	36	4	2>8	0.9	Dk = d+0.3	A1/2	B1/4,5	1100	455	5.0
DSE 1820.11 MTZ DSE 1810.01 AHZ	58 23	2	2>8 1>4	0.9	Dk = d $Dk = d+0.3$	A1/2 A1/1	B1/4,5 B1/1,2,3	900 1150	360 490	2.7
DSE 1810.01 SHZ	23	2	1>4	0.9	Dk = d+0.3	A1/1	B1/1,2,3	1150	490	2.7
DSE 1810.00 STZ	23	2	1>4	0.85	Dk = d+0.3	A1/1	B1/1,2,3	900	310	2.7
DSE 1810.00 ATZ DSE 1810.00 MTZ	23 23	2 2	1>4 1>4	0.85 0.85	Dk = d+0.3 Dk = d+0.3	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 900	310 310	2.7 2.7
DSE 1810.00 SHZ	23	2	1>4	0.9	Dk = d+0.3	A1/1	B1/1,2,3	1150	490	2.7
DSE 1810.00 AHZ DSE 2210 ATZ	23 38	2	1>4	0.9 1.0	Dk = d+0.3 $Dk = d$	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900	490 310	2.7
DSE 2210 STZ	38	2	1>4	1.0	Dk = d	A1/1	B1/1,2,3	900	310	2.7
DSE 2210 MTZ DSE 2210 AHZ	38 21	2	1>4 1>4	1.0 1.0	Dk = d $Dk = d+0.3$	A1/1 A1/1	B1/1,2,3 B1/1,2,3	900 950	310 360	2.7 2.7
DSE 2210 SHZ	21	2	1>4	1.0	Dk = d+0.3 Dk = d+0.3	A1/1	B1/1,2,3	950	360	2.7
DSE 2220 ATZ	58 58	4 4	2>8	1.0	Dk = d	A1/2	B1/4,5 B1/4,5	900 900	360 360	5.0
DSE 2220 STZ DSE 2220 MTZ	58	4	2>8 2>8	1.0 1.0	Dk = d Dk = d	A1/2 A1/2	B1/4,5 B1/4,5	900	360 360	5.0 5.0
DSE 2220 AHZ	34	4	2>8	1.0	Dk = d+0.3	A1/2	B1/4,5	850	360	5.0
DSE 2220 SHZ DSE AAMZ.00ATZ	4,2	4 4 pole mag	2>8 net wheel	1.0	Dk = d+0.3 $Dk = d$	A1/2 —	B1/4,5 C1/all	850 300	360 330	6.0
DSE AAMZ.00AHZ	4,2	4 pole mag	net wheel	_	Dk = d	_	C1/all	300	330	6.0
DSE 36MZ.00ATZ DSE 36MZ.00AHZ	4,2 4,2	4 pole mag 4 pole mag		_	Dk = d Dk = d	_	C1/all C1/all	300 300	330 330	6.0 6.0
DSE 25ME.00AHZ	$0,45^{2}$	4 pole mag		_	X = 80	A3/1	C2/all	400	2100	12.0

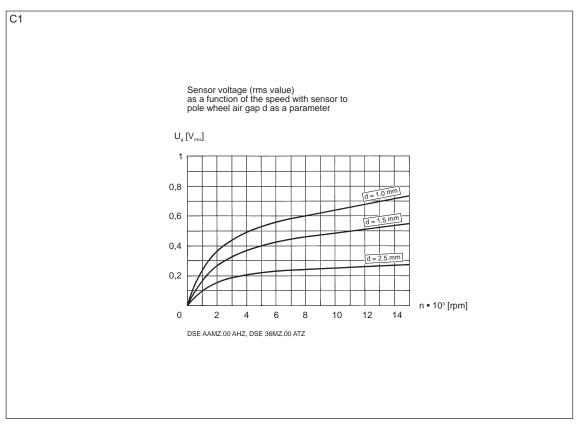
¹⁾ Measured with angular speed of 5 m/s. Standard polewheel module and air gap 0.1 mm. 2) Standard measurement conditions per diagram A3.

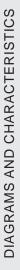

Electromagnetic Sensor without line amplifier Technical Data

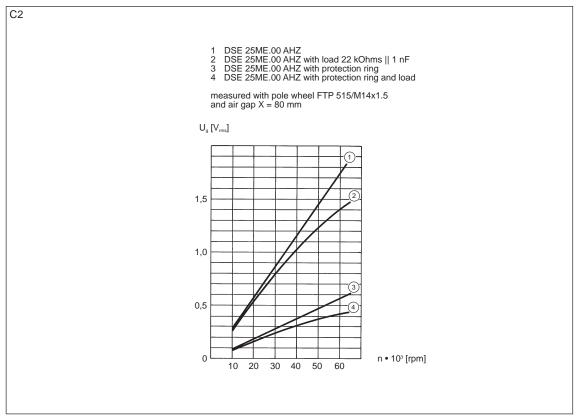



DSE

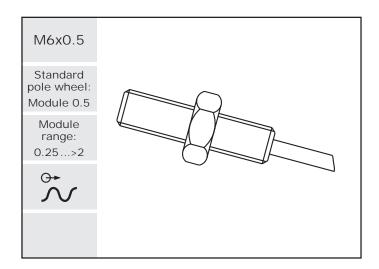
DIAGRAMS AND CHARACTERISTICS





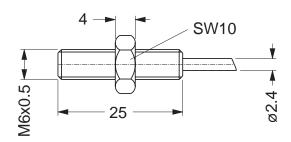


Electromagnetic Sensor without line amplifier Technical Data



DSE ...Z

DSE 0603 S



Features

- Without line amplifier
- Lower frequency limit: 10 Hz
- High temperature version

Dimensions

Version S

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 0603.00 SHZ	304Z-03355	Cable 0.2 m	M6x0.5	6	-20+130	previously FTG 160 SH

Type DSE 0603 Version S

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4). Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Pole wheel

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

 $\underline{Pole\ wheel-sensor\ gap} \geq 0.1\ mm.\ Gap\ depending\ on\ rotational\ speed\ (circumferential)\ and\ module$

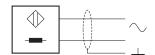
acc. to diagrams A2, B2 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A2

show the dependence on gap d.


Diagram B2 shows lowest measuring speed N100 for different modules and gaps d.

Output voltage Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP 67 (head), IP 67 (cable connection).

Vibration immunity 20 g_a in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless Steel 1.4305, electronic components potted

in a chemical- and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

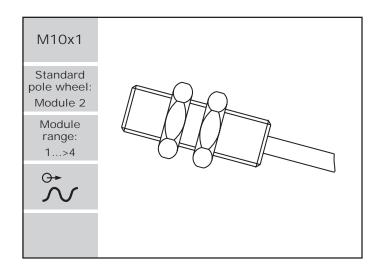
Weight Acc. to model overview.

Operating instructions 304E-63919

Versions

Version SH Teflon cable: Part nr. 824L-35647, 2wire, 2 x 0.092 mm2 (AWG 28), stranded wire

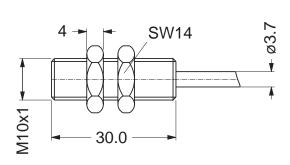
(metal net insulated from the housing), white.


Outer Ø max. 2.4 mm, bending radius min. 24 mm, weight 9 g/m.

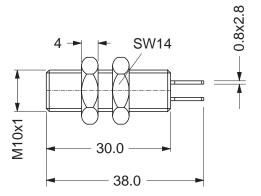
Standard length for version SH: 0.2 m.

DSF

DSE 1010 S



Features


- Without line amplifier
- Lower frequency limit: 10 Hz

Dimensions

Version S

Version Z

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1010.00 STZ	304Z-03139	Cable 3 m	M10x1	15	-20+85	previously FTG 242 K(S)
DSE 1010.00 ZTZ	304Z-03174	Flat pin terminal	M10x1	15	-20+85	previously FTG 242 M(Z)

Type DSE 1010 Version S, Z

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...50 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

 $\underline{Pole\ wheel-sensor\ gap} \geq 0.1\ mm.\ Gap\ depending\ on\ rotational\ speed\ (circumferential)\ and\ module$

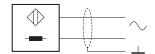
acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B shows lowest measuring speed N100 for different modules and gaps d.

Output voltage Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel- \emptyset 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP 68 (head), IP 67 (cable connection), IP00 (tab connection).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Argentan (German silver) CuNi10Zn42Pb DIN 2.0770, front side hermetically sealed,

electronic components potted in a chemical- and age-proof synthetic resin.

Dimensions according to model overview and dimensional drawing.

Weight Acc. to model overview.

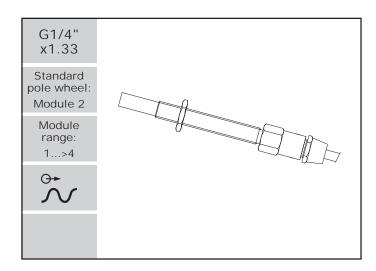
Operating instructions 304E-63918

Versions

Version ST PVC cable: Part nr. 824L-35546, 2wire, 2 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

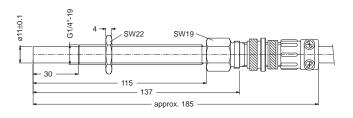
Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 19 g/m.


Version ZT AMP connection: Part nr. 820K-31633, 0.8x2.8 DIN 46244,

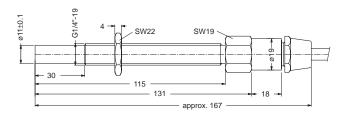
Flat pin terminal: Part nr. 820K-31636, 0.8x2.8 DIN 46245.

DSF

DSE AD10 A, S



Features


- Without line amplifier
- Turbocharger application
- High temperature version

Dimensions

Version A

Version S

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE AD10.00 AHZ	304Z-03181	Connector	G1/4"x1.33	150	-20+150	previously FTG 231 A
DSE AD10.00 SHZ	304Z-03182	Cable 5 m	G1/4"x1.33	520	-20+150	previously FTG 231 S

Type DSE AD10 Version A, S

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...50 kHz (acc. to specifications for turbocharger).

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm. Or acc. to specifications for turbocharger.

<u>Pole wheel-sensor gap</u> \geq 0.1 mm. Gap depending on rotational speed (circumferential) and module

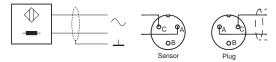
acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP 68 (head), IP 67 (cable connection), IP 50 (jack connection)

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

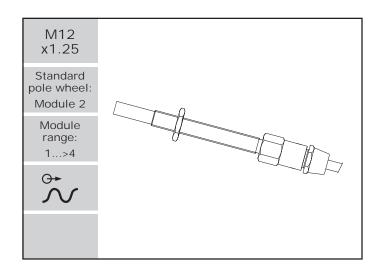
Operating instructions 304E-63922

Versions

Version SH Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

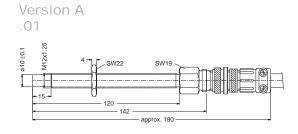
(metal net insulated from the housing), black. Outer Ø max. 5.0 mm,

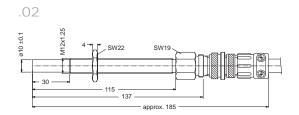
bending radius min. 80 mm, weight 45 g/m. Standard length for version SH: 5 m.

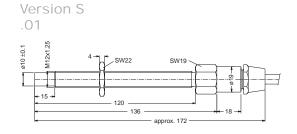

Version AH <u>Connection type:</u> 820E-31142. <u>Connection plug:</u> 820E-31141.

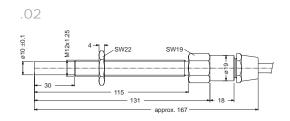
83

DSE


DSE 1210 A, S




Features


- Without line amplifier
- Turbocharger application
- High temperature version

Dimensions

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1210.01 ATZ	304Z-03106	Connector	M12x1.25	150	-20+85	previously FTG 232 A
DSE 1210.01 STZ	304Z-03107	Cable 5 m	M12x1.25	520	-20+85	previously FTG 232 S
DSE 1210.02 AHZ	304Z-03109	Connector	M12x1.25	150	-20+150	previously FTG 233 A
DSE 1210.02 SHZ	304Z-03110	Cable 5 m	M12x1.25	520	-20+150	previously FTG 233 S

Type DSE 1210 Version A, S

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...50 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4). Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm or acc. to specifications for turbocharger.

<u>Pole wheel-sensor gap</u> \geq 0.1 mm. Gap depending on rotational speed (circumferential) and module

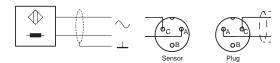
acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A

show the dependence on gap d.


Diagram B shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head version H), IP64 (head version T), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed (H-version), electronic components potted in a

chemical- and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63922

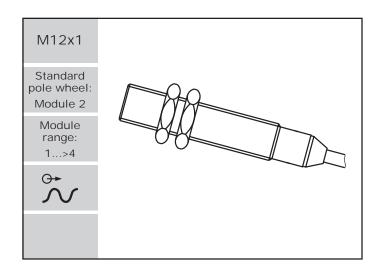
Versions

Version SH

Version ST PVC cable: Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), grey.

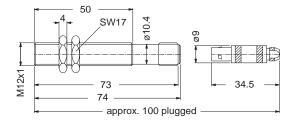
Outer Ø max. 6,7 mm, bending radius min. 60 mm, weight 70 g/m. Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire


(metal net insulated from the housing), black. Outer Ø max. 5.0 mm,

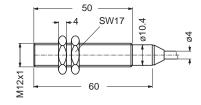
bending radius min. 80 mm, weight 45 g/m. Standard length for version SH: 2 m, 5 m.

Version AH <u>Connection type:</u> 820E-31142. <u>Connection plug:</u> 820E-31141.

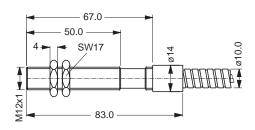
DSE 1210 A, S, M



Features


- Without line amplifier
- High temperature version

Dimensions


Version A

Version S

Version M

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1210.00 SHZ	304Z-04233	Cable 2 m	M12x1	100	-40+150	Standard
DSE 1210.00 AHZ	304Z-04235	Connector	M12x1	35	-40+150	Standard
DSE 1210.00 STZ	304Z-04232	Cable 5 m	M12x1	160	-20+85	Standard
DSE 1210.00 ATZ	304Z-04234	Connector	M12x1	35	-40+85	Standard
DSE 1210.00 MTZ	304Z-04236	Protection hose 5 m	M12x1	495	-20+85	Standard

Type DSE 1210 Version A, S, M

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...50 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm or acc. to specifications for turbocharger

Pole wheel-sensor gap ≥ 0.1 mm. Gap depending on rotational speed (circumferential) and module

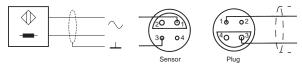
acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel- \emptyset 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918

Versions

Version ST PVC cable: Part nr. 824L-35546, 2wire, 2 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 19 g/m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 2 x 0.22 mm² (AWG 24), stranded wire

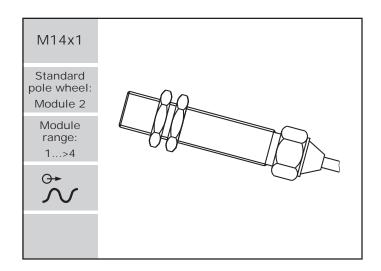
(metal net insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT Protection hose over PVC cable: Part nr. 825G-36148, tube made of profile milled steel plate with

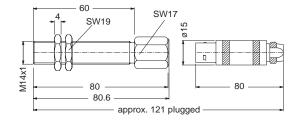
PUR cover, blue. Weather and water proof, conditionally oil and acid resistant.


Outer Ø 10 mm, bending radius min. 45 mm, weight 75 g/m.

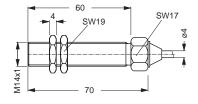
Standard length for version MT: 5 m.

Version A <u>Connection type:</u> 820A-35922. <u>Connection plug:</u> 820A-35921.

DSE 1410 A, S, M



Features


- Without line amplifier
- High temperature version

Dimensions

Version A

Version S

Version M

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1410.00 ATZ	304Z-04239	Connector	M14x1	90	-20+85	Standard
DSE 1410.00 AHZ	304Z-04240	Connector	M14x1	90	-40+150	Standard
DSE 1410.00 STZ	304Z-04237	Cable 5 m	M14x1	210	-20+85	Standard
DSE 1410.00 SHZ	304Z-04238	Cable 2 m	M14x1	150	-40+150	Standard
DSE 1410.00 MTZ	304Z-04241	Protection hose 5 m	M14x1	835	-20+85	Standard

Type DSE 1410 Version A, S, M

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...50 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

<u>Pole wheel-sensor gap</u> \geq 0.1 mm. Gap depending on rotational speed (circumferential) and module

acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918

Versions

Version ST PVC cable: Part nr. 824L-35546, 2wire, 2 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 19 g/m.

Version SH <u>Teflon cable:</u> Part nr. 824L-35053, 4wire, 2 x 0.22 mm² (AWG 24), stranded wire

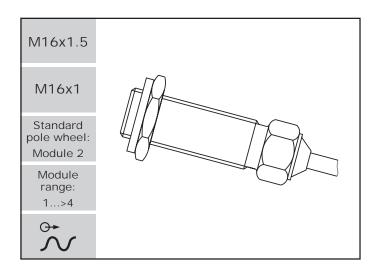
(metal net insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

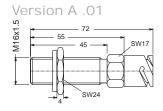
Version MT Protection hose over PVC cable: Part nr. 825G-30924, tube made of profile milled

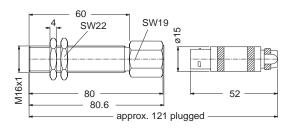
steel plate with PVC cover, grey. Weather and water proof,


conditionally oil and acid resistant. Outer \varnothing 14 mm, bending radius min. 40 mm, weight 130 g/m.

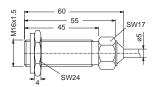
Standard length for version MT: 5 m.

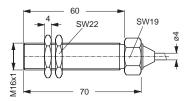
Version A <u>Connection type:</u> 820A-35731. <u>Connection plug:</u> 820A-35732.

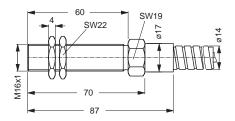

DSE 1610 A, S, M


Features

- Without line amplifier
- High temperature version
- Types .01 with gasket


Dimensions


Version A .00


Version S .01

Version S .00

Version M

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1610.01 AHZ	304Z-03774	Connector	M16x1.5	65	-40+125	Standard
DSE 1610.01 SHZ	304Z-03773	Cable 1 m	M16x1.5	140	-40+125	Standard
DSE 1610.00 ATZ	304Z-04244	Connector	M16x1	95	-20+85	Standard
DSE 1610.00 AHZ	304Z-04245	Connector	M16x1	95	-40+150	Standard
DSE 1610.00 STZ	304Z-04242	Cable 5 m	M16x1	215	-20+85	Standard
DSE 1610.00 SHZ	304Z-04243	Cable 2 m	M16x1	155	-40+150	Standard
DSE 1610.00 MTZ	304Z-04246	Protection hose 5 m	M16x1	840	-20+85	Standard

Type DSE 1610 Version A, S, M

Technical Data

Supply

Power supply Active sensor without power supply, reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

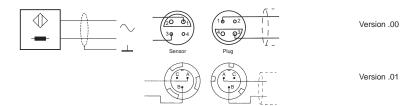
Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 3 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm. Pole wheel-sensor gap \geq 0.1 mm. Gap depending on rotational speed

(circumferential) and module acc. to diagrams A1, B1 and Technical Data (see table 1).

Output


Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A show the dependence on gap d. Diagram B shows lowest measuring speed N100 for different modules and gaps d. Output voltage Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918: Version .00. 304E-63920: Version .01.

Versions

Version ST PVC cable: Part nr. 824L-35546, 2wire, 2 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 19 g/m.

Version SH .00 <u>Teflon cable:</u> Part nr. 824L-35053, 4wire, 2 x 0.22 mm² (AWG 24), stranded wire (metal net insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Till and the British of the Control of the Control

Version SH .01 <u>Teflon cable:</u> Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), black. Outer \varnothing max. 5.0 mm,

bending radius min. 80 mm, weight 45 g/m.

Standard length for version SH: 5 m.

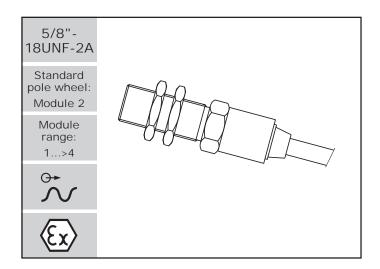
Version MT <u>Protection hose over PVC cable:</u> Part nr. 825G-30924, tube made of profile milled steel plate

with PVC cover, grey. Weather and water proof, conditionally oil and acid resistant.

Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

Standard length for version MT: 5 m.

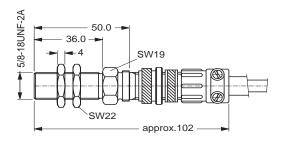
 Version .00 A
 Connection type:
 820A-35731.
 Connection plug:
 820A-35732.


 Version .01 A
 Connection type:
 820E-36087.
 Connection plug:
 820E-36478.

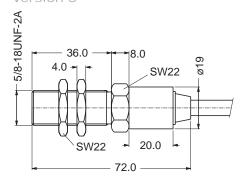
DSE ...Z

91

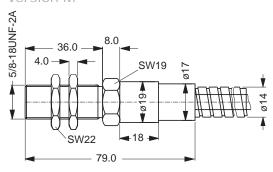
DSE EH10 A, S, M



Features


- Without line amplifier
- High temperature version
- Available as model FTG...Ex in intrinsically safe class Ex i G5 (zone 1)

Dimensions


Version A

Version S

Version M

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temp. [°C]	Notes
DSE EH10.00 STZ	304Z-04252		5/8"-18UNF-2A	450	-25+85	prev. FTG 2110.00 S
DSE EH10.00 STZ Ex	347Z-04345		5/8"-18UNF-2A	450	-20+65	prev. FTG 2150.00 S Ex
DSE EH10.00 MTZ	304Z-04256	Protection hose 5 m	5/8"-18UNF-2A	1200	-25+85	prev. FTG 2110.00 M
DSE EH10.00 MTZ Ex	347Z-03969	Protection hose 5 m	5/8"-18UNF-2A	1200	-20+65	prev. FTG 2150.00 SM Ex
DSE EH10.00 ATZ	304Z-04254	Connector	5/8"-18UNF-2A	80	-25+85	prev. FTG 2110.00 A
DSE EH10.00 ATZ Ex	347Z-04313	Connector	5/8"-18UNF-2A	80	-20+65	prev. FTG 2150.00 A Ex
DSE EH10.00 SHZ	304Z-04253	Cable 2 m	5/8"-18UNF-2A	220	-40+150	prev. FTG 2210.00 S
DSE EH10.00 AHZ	304Z-04255	Connector	5/8"-18UNF-2A	80	-40+150	prev. FTG 2210.00 A

Type DSE EH10 Version A, S, M

Technical Data

Supply

Power supply Active sensor without power supply. Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1)

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4). Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

 $Module \geq 1, min. \ tooth \ width \ 6 \ mm, \ side \ offset \ with \ min. \ tooth \ width: < 0.2 \ mm,$

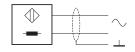
eccentricity < 0.2 mm.

<u>Pole wheel-sensor gap</u> \geq 0.1 mm. Gap depending on rotational speed (circumferential) and module

acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,


pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A show the dependence on gap d. Diagram B shows lowest measuring speed N100 for different modules and gaps d. Output voltage Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

EX ~

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP67 (cable connection), IP50 (jack connection), IP68 (head).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screen and system galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63926 standard, 347E-63910 Ex-version.

Versions

Version SH

Version ST <u>PVC cable:</u> Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), grey.

Outer Ø max. 6,7 mm, bending radius min. 60 mm, weight 70 g/m Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), black.

Outer Ø max. 5.0 mm, bending radius min. 80 mm, weight 45 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT Protection hose over PVC cable: Part nr. 825G-30924, tube made of profile milled steel plate

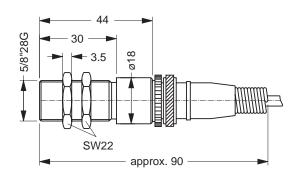
with PVC cover, grey. Weather and water proof, conditionally oil and acid resistante.


Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

Standard length for version MT: 5 m.

Version A <u>Connection type:</u> 820E-31142. <u>Connection plug:</u> 820E-31141.

DSE EH10 A



Features

Without line amplifier

Dimensions

Version A

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE EH10.05 ATZ	304Z-03399	Connector	5/8"-28	90	-20+85	previously FTG 101 A

Type DSE EH10 Version A

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1)

Input

Frequency range ~10 Hz...50 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4). Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

 $\underline{\text{Pole wheel-sensor gap}} \geq 0.1 \text{ mm. Gap depending on rotational speed (circumferential) and module}$

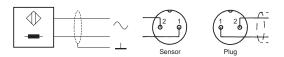
acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B1 shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP67 (head), IP50 (jack connection). Vibration immunity $20 g_n$ in the range 5...2000 Hz. Shock immunity $50 g_n$ during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

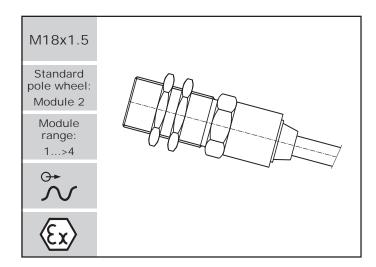
Insulation Housing, cable screen and system galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, electronic components potted in a chemical- and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

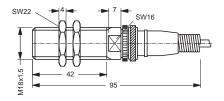
Weight Acc. to model overview.

Operating instructions 304E-63918

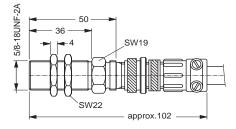

Versions

Version A Connection type: 820A-30658. Connection plug: 820A-30659.

DSE



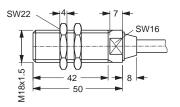
DSE 1810 A, S, M



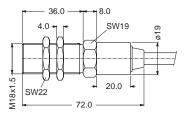
Dimensions

Version A .09

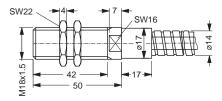
Version A .10/.11

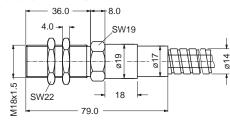


Model overview


Features

- Without line amplifier
- High temperature version
- Available as model FTG...Ex in intrinsically safe class Ex i G5 (zone 1)


Version S .09


Version S .10/.11

Version M .09

Version M .10/.11

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1810.09 ATZ	304Z-03171	Connector	M18x1.5	65	-25+85	previously FTG 291 A
DSE 1810.09 STZ	304Z-03170	Cable 1.5 m	M18x1.5	135	-25+85	previously FTG 291 S
DSE 1810.09 MTZ	304Z-04257	Protection hose 1.5 m	M18x1.5	280	-25+85	previously FTG 291 SM
DSE 1810.11 ATZ	304Z-03148	Connector	M18x1.5	110	-25+85	previously FTG 211 A
DSE 1810.10 ATZ Ex	347Z-03158	Connector	M18x1.5	110	-20+65	previously FTG 215 A Ex
DSE 1810.11 AHZ	304Z-03154	Connector	M18x1.5	110	-40+150	previously FTG 221 AH
DSE 1810.11 STZ	304Z-03149	Cable 5 m	M18x1.5	480	-25+85	previously FTG 211 S
DSE 1810.10 STZ Ex	347Z-03159	Cable 5 m	M18x1.5	480	-20+65	previously FTG 215 S Ex
DSE 1810.11 SHZ	304Z-03155	Cable 5 m	M18x1.5	250	-40+150	previously FTG 221 SH
DSE 1810.11 MTZ	304Z-03150	Protection hose 5 m	M18x1.5	1230	-20+85	previously FTG 211 SM previously FTG 215 SM Ex
DSE 1810.10 MTZ Ex	347Z-04343	Protection hose 5 m	M18x1.5	1230	-20+65	

Type DSE 1810 Version A, S, M

Technical Data

Supply

Power supply Active sensor without power supply. Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

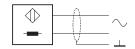
Module \geq 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm. Pole wheel-sensor gap \geq 0.1 mm. Gap depending on rotational speed

(circumferential) and module acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

ΕX


pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1 show the dependence on gap d. Diagram B1 shows lowest measuring speed N100 for different modules and gaps d. Output voltage Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

EX V

Version .09

Version .10 + 11

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP 67 (cable connection), IP 50 (jack connection).

IP 67 (head version T), IP 68 (head version H and Ex).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screen and system galvanically isolated (500 V/50 Hz/1 min).

Housing <u>Version .09:</u> Aluminium alloy Nr. 3.0615.

<u>Version .10 + .11:</u> Stainless Steel 1.4305. Front side hermetically sealed (version H), electronic components potted in a chemical- and age-proof synthetic resin. Dimensions acc. to model

overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918 Standard, 347E-63910 Ex-version.

Versions

Version SH

Version ST <u>PVC cable:</u> Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), grey.

Outer Ø max. 6,7 mm, bending radius min. 60 mm, Weight 70 g/m. Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), black.

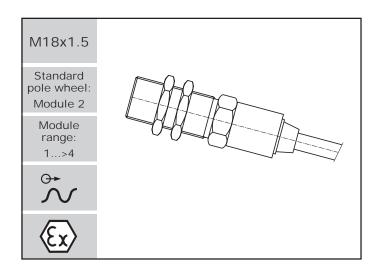
Outer Ø max. 5.0 mm, bending radius min. 80 mm, weight 45 g/m.

Standard length for version SH: 2 m, 5 m.

Version MT <u>Protection hose over PVC cable:</u> Part nr. 825G-30924,tube made of profile milled steel plate

with PVC cover, grey. Weather and water proof, conditionally oil and acid resistant.

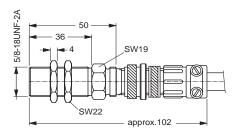
Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.


Standard length for version MT: 5 m.

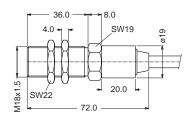
 Version .09 A
 Connection type:
 820A-30658.
 Connection plug:
 820A-30659.

 Version .10 + .11 A
 Connection type:
 820E-31142.
 Connection plug:
 820E-31141.

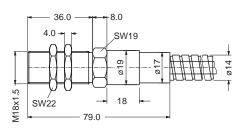
DSE 1820 A, S, M



Features


- Without line amplifier
- High temperature version
- Available as model FTG...Ex in intrinsically safe class Ex i G5 (zone 1)

Dimensions


Version A

Version S

Version M

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1820.11 ATZ	304Z-03151	Connector	M18x1.5	110	-25+85	previously FTG 212 A
DSE 1820.10 ATZ Ex	347Z-03161	Connector	M18x1.5	110	-20+65	previously FTG 216 A Ex
DSE 1820.11 AHZ	304Z-03156	Connector	M18x1.5	110	-40+150	previously FTG 222 AH
DSE 1820.11 STZ	304Z-03152	Cable 5 m	M18x1.5	480	-25+85	previously FTG 212 S
DSE 1820.10 STZ Ex	347Z-03162	Cable 5 m	M18x1.5	480	-20+65	previously FTG 216S Ex
DSE 1820.11 SHZ	304Z-03157	Cable 5 m	M18x1.5	250	-40+150	previously FTG 222 SH
DSE 1820.11 MTZ	304Z-03153	Protection hose 5 m	M18x1.5	1230	-25+85	previously FTG 212 SM previously FTG 216 SM Ex
DSE 1820.10 MTZ Ex	347Z-04344	Protection hose 5 m	M18x1.5	1230	-20+65	

Type DSE 1820 Version A, S, M

Technical Data

Supply

Active sensor without power supply. Reverse polarity protection. Power supply

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm, eccentricity < 0.2 mm. Pole wheel-sensor gap \geq 0.1 mm. Gap depending on rotational speed

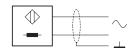
(circumferential) and module acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B1 shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value. (I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP 67 (cable connection), IP 50 (jack connection).

IP 67 (head version T), IP 68 (head version H and Ex).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g, during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screen and system galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1,4305.

Front side hermetically sealed, electronic components potted in a chemical- and age-proof

synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918 Standard, 347E-63910 Ex-version.

Versions

Version SH

Version ST PVC cable: Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), grey,

Outer Ø max. 6,7 mm, bending radius min. 60 mm, Weight 70 g/m. Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), black.

Outer Ø max. 5.0 mm, bending radius min. 80 mm, weight 45 g/m.

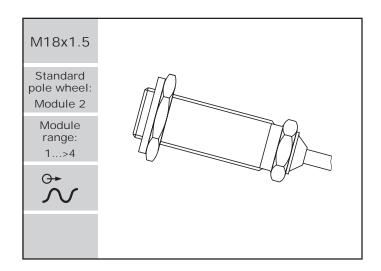
Standard length for version SH: 2 m, 5 m.

Version MT Protection hose over PVC cable: Part nr. 825G-30924, tube made of profile milled steel plate

with PVC cover, grey. Weather and water proof,

conditionally oil and acid resistant.

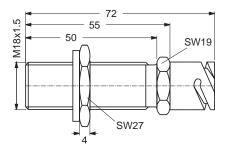
Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.


Standard length for version MT: 5 m.

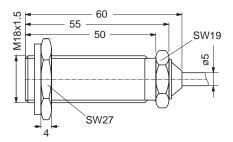
Version A Connection type: 820E-31142. Connection plug: 820E-31141. DSF

99

DSE 1810.01 A, S



Features


- Without line amplifier
- High temperature version
- With gasket

Dimensions

Version A

Version S

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1810.01 AHZ	304Z-03776	Connector	M18x1.5	100	-40+125	Standard
DSE 1810.01 SHZ	304Z-03775	Cable 1 m	M18x1.5	160	-40+125	Standard

Type DSE 1810.01 Version A, S

Technical Data

Supply

Power supply Active sensor without power supply.

Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

Pole wheel-sensor gap ≥ 0.1 mm. Gap depending on rotational speed (circumferential) and module

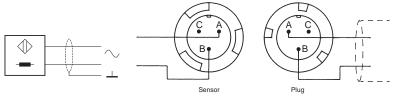
acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B1 shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection), IP50 (jack connection).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

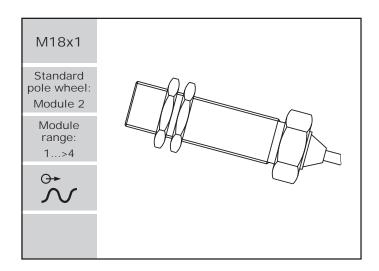
Weight Acc. to model overview.

Operating instructions 304E-63920

Versions

Version SH Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

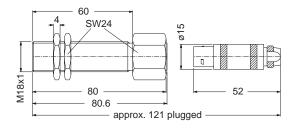
(metal net insulated from the housing), black.


Outer Ø max. 5.0 mm, bending radius min. 80 mm, weight 45 g/m.

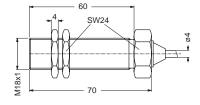
Standard length for version SH: 1 m.

Version AH <u>Connection type:</u> 820E-36087. <u>Connection plug:</u> 820E-36478.

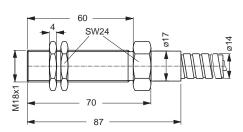
DSE 1810 A, S, M



Features


- Without line amplifier
- High temperature version

Dimensions


Version A

Version S

Version M

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1810.00 STZ	304Z-04247	Cable 5 m	M18x1	250	-25+85	Standard
DSE 1810.00 ATZ	304Z-04249	Connector	M18x1	100	-25+85	Standard
DSE 1810.00 MTZ	304Z-04251	Protection hose 5 m	M18x1	845	-25+85	Standard
DSE 1810.00 SHZ	304Z-04248	Cable 2 m	M18x1	160	-40+150	Standard
DSE 1810.00 AHZ	304Z-04250	Connector	M18x1	100	-40+150	Standard

Type DSE 1810 Version A, S, M

Technical Data

Supply Power supply

Active sensor without power supply. Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 6 mm, side offset with min. tooth width: < 0.2 mm,

eccentricity < 0.2 mm.

Pole wheel-sensor gap ≥ 0.1 mm. Gap depending on rotational speed (circumferential) and module

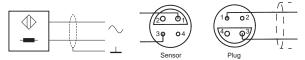
acc. to diagrams A1, B1 and Technical Data (see table 1).

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B1 shows lowest measuring speed N100 for different modules and gaps d. Output voltage

Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel-Ø 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

IP68 (head), IP67 (cable connection), IP50 (jack connection). Protection class

Vibration immunity 20 g_a in the range 5...2000 Hz. Shock immunity 50 g during 20 ms, half sine wave. Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-Housing

and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918

Versions

Version ST PVC cable: Part nr. 824L-35546, 2wire, 2 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 19 g/m.

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 2 x 0.22 mm2 (AWG 24), stranded wire

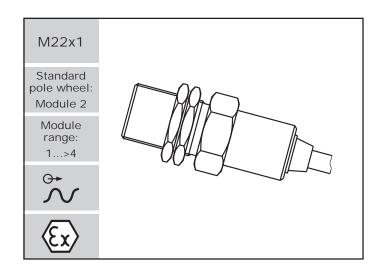
(metal net insulated from the housing), white.

Outer Ø max. 4.0 mm, bending radius min. 60 mm, weight 32 g/m.

Standard length for version SH: 2 m, 5 m.

Protection hose over PVC cable: Part nr. 825G-30924, tube made of profile milled steel plate with Version MT

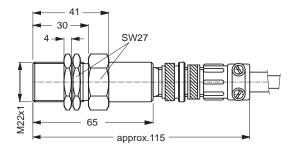
PVC cover, grey. Weather and water proof, conditionally oil and acid resistante.


Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

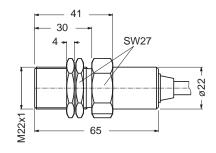
Standard length for version MT: 5 m.

Version A Connection type: 820A-35731. Connection plug: 820A-35732. DSF

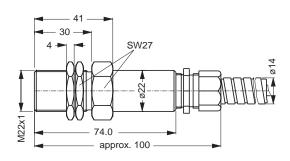
DSE 2210 A, S, M



Features


- Without line amplifier
- High temperature version
- Available as model FTG...Ex in intrinsically safe class Ex i G5 (zone 1)

Dimensions


Version A

Version S

Version M

Туре	Part Nr.	Connection	Housing thread.	Weight [g]	Operating temperature [°C]	Notes
DSE 2210 ATZ	304Z-03022	Connector	M22x1	200	-25+85	previously FTG 1051 A
DSE 2210.10 ATZ Ex	347Z-03164	Connector	M22x1	200	-20+65	previously FTG 1055 A Ex
DSE 2210 STZ	304Z-03023	Cable 5 m	M22x1	580	-25+85	previously FTG 1051 S
DSE 2210.10 STZ Ex	347Z-03165	Cable 5 m	M22x1	580	-20+65	previously FTG 1055 S Ex
DSE 2210 MTZ	304Z-03024	Protection hose 5 m	M22x1	1400	-25+85	previously FTG 1051 SM previously FTG 1055 SM Ex
DSE 2210.10 MTZ Ex	347Z-03261	Protection hose 5 m	M22x1	1400	-20+65	
DSE 2210 AHZ	304Z-03025	Connector	M22x1	200	-40+150	previously FTG 1051 AH
DSE 2210 SHZ	304Z-03026	Cable 2 m	M22x1	340	-40+150	previously FTG 1051 SH

Type DSE 2210 Version A, S, M

Technical Data

Supply

Power supply Active sensor without power supply. Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

 $Module \geq 1, min. \ tooth \ width \ 6 \ mm, \ side \ offset \ with \ min. \ tooth \ width: < 0.2 \ mm,$

eccentricity < 0.2 mm.

<u>Pole wheel-sensor gap</u> \geq 0.1 mm. Gap depending on rotational speed (circumferential) and module

acc. to diagrams A1, B1 and Technical Data (see table 1).

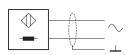
Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B1 shows lowest measuring speed N100 for different modules and gaps d. Output voltage


Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel- \varnothing 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP67 (cable connection), IP50 (jack connection).

IP67 (head version T), IP68 (head version H and Ex).

 $\begin{array}{ll} \mbox{Vibration immunity} & \mbox{20 g}_{n} \mbox{ in the range 5...2000 Hz.} \\ \mbox{Shock immunity} & \mbox{50 g}_{n} \mbox{ during 20 ms, half sine wave.} \\ \end{array}$

Operating temperature Acc. to model overview.

Insulation Housing, cable screen and system galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918 Standard, 347E-63910 Ex-version.

Versions

Version SH

Version ST PVC cable: Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), grey.

Outer Ø max. 6.7 mm, bending radius min. 60 mm, weight 70 g/m. Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), black.

Outer Ø max. 5.0 mm, bending radius min. 80 mm, weight 45 g/m.

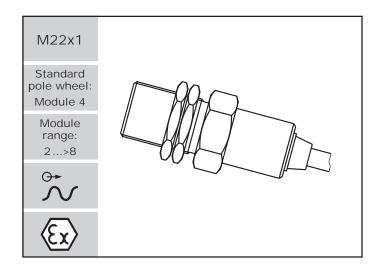
Standard length for version SH: 5 m.

Version MT Protection hose over PVC cable: Part nr. 825G-30924, tube made of profile milled steel plate

with PVC cover, grey. Weather and water proof, conditionally oil and acid resistant.

Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

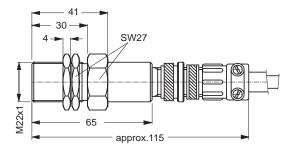
Standard length for version MT: 5 m.


Version A <u>Connection type:</u> 820E-31142. <u>Connection plug:</u> 820E-31141

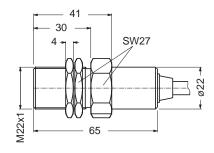
DSE ...Z

105

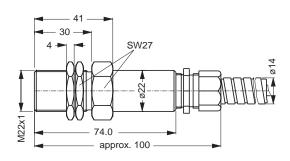
DSE 2220 A, S, M



Features


- Without line amplifier
- High temperature version
- Available as model FTG...Ex in intrinsically safe class Ex i G5 (zone 1)

Dimensions


Version A

Version S

Version M

Туре	Part Nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 2220 ATZ	304Z-03027	Connector	M22x1	200	-25+85	previously FTG 1052 A
DSE 2220.10 ATZ Ex	304Z-03167	Connector	M22x1	200	-20+65	previously FTG 1056 A Ex
DSE 2220 STZ	304Z-03028	Cable 5 m	M22x1	580	-25+85	previously FTG 1052 S
DSE 2220.10 STZ Ex	347Z-03168	Cable 5 m	M22x1	580	-20+65	previously FTG 1056 S Ex
DSE 2220 MTZ	304Z-03029	Protection hose 5 m	M22x1	1400	-25+85	previously FTG 1052 SM previously FTG 1056 SM Ex
DSE 2220.10 MTZ Ex	347Z-03262	Protection hose 5 m	M22x1	1400	-20+65	
DSE 2220 AHZ	304Z-03030	Connector	M22x1	200	-40+150	previously FTG 1052 AH
DSE 2220 SHZ	304Z-03031	Cable 2 m	M22x1	340	-40+150	previously FTG 1052 SH

Type DSE 2220 Version A, S, M

Technical Data

Supply Power supply

Active sensor without power supply. Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).
Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

 $Module \geq 1, min. \ tooth \ width \ 6 \ mm, \ side \ offset \ with \ min. \ tooth \ width: < 0.2 \ mm,$

eccentricity < 0.2 mm.

<u>Pole wheel-sensor gap</u> \geq 0.1 mm. Gap depending on rotational speed (circumferential) and module

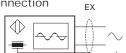
acc. to diagrams A1, B1 and Technical Data (see table 1).

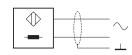
Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap,

pole dimensions and structural shape (involute gear form preferred). Characteristics in diagram A1

show the dependence on gap d.


Diagram B1 shows lowest measuring speed N100 for different modules and gaps d. Output voltage


Un at rotational speed of 5 m/sec is the reference value.

(I.e. at pole wheel- \varnothing 64 mm, n = 1500 min⁻¹) acc. to Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP67 (head version T), IP68 (head version H and Ex),

IP50 (jack connection), IP64 (cable connection).

Vibration immunity 20 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screen and system galvanically isolated (500 V/50 Hz/1 min).

Housing Stainless steel 1.4305, front side hermetically sealed, electronic components potted in a chemical-

and age-proof synthetic resin. Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions 304E-63918 Standard, 347E-63910 Ex-version.

Versions

Version ST PVC cable: Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), grey.

Outer Ø max. 6,7 mm, bending radius min. 60 mm, weight 70 g/m.

Version SH <u>Teflon cable:</u> Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), black.

Outer Ø max. 5.0 mm, bending radius min. 80 mm, weight 45 g/m.

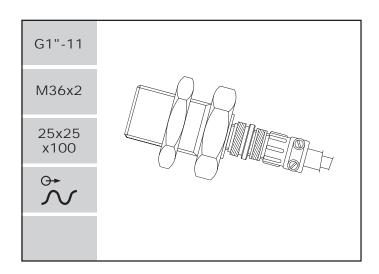
Standard length for version SH: 2 m, 5 m.

Version MT <u>Protection hose over PVC cable:</u> Part nr. 825G-30924, tube made of profile milled steel plate

with PVC cover, grey. Weather and water proof, conditionally oil and acid resistant.

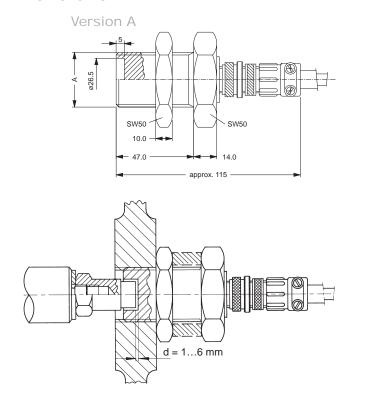
Outer Ø 14 mm, bending radius min. 40 mm, weight 130 g/m.

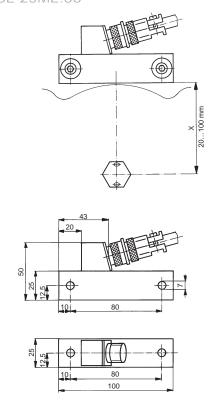
Standard length for version MT: 5 m.


Version A <u>Connection type:</u> 820E-31142. <u>Connection plug:</u> 820E-31141.

DSE ...Z

107


DSE ..MZ/..ME A


Features

- Without line amplifier
- DSE AAMZ.00 AHZ DSE 36MZ.00A.Z: Magnetic pole wheel, 4pole
- DSE 25ME.00 AHZ: Magnetic pole wheel, 2pole, for long distances
- Turbocharger application
- High temperature version

Dimensions

DSE 25ME.00

Туре	Part Nr.	Connection	Housing	Weight thread	Operating [g]	Notes temperature [°C]
DSE AAMZ.00 AHZ	304Z-03146	Connector + cable 2 m	G1"-11	620	-50+125 (135)	prev. FTG 103 SH2
DSE 36MZ.00 ATZ DSE 36MZ.00 AHZ	304Z-03723 304Z-03147	Connector + cable 5 m Connector + cable 5 m	M36x2 M36x2	670 670	-25+85 -50+125 (135)	prev. FTG 104 S2 prev. FTG 104 SH2
DSE 25ME.00 AHZ	304Z-03263	Connector	25x25x100	260	-20+200	prev. FTG 110 A

Type DSE ..MZ/..ME Version A

Technical Data

Supply Power supply

Active sensor without power supply. Reverse polarity protection.

No current consumption. Coil inductance acc. to Technical Data (see table 1).

Input

Frequency range ~10 Hz...25 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/ $\overline{1}$.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

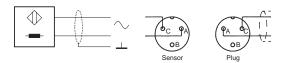
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Magnetic pole wheels see section pole wheels (FTP 511).

4-pole magnetic pole wheels, centerd at DSE...MZ. 2-pole magnetic pole wheels, eccentric at DSE...ME.

Output

Signal output A.C. voltage, approx. sinusoidal. Amplitude dependent on rotational speed, pole wheel-sensor gap d


and pole wheel dimensions. Characteristics in diagram A3 show the dependence on gap d.

Diagrams B3 and B4 show lowest measuring speed N100 for different modules and gaps d acc. to

Technical Data (see table 1).

Short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP67 (head), IP50 (jack connection). Vibration immunity $20 \, g_n$ in the range $5...2000 \, Hz$. Shock immunity $50 \, g_n$ during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Type ..MZ: brass 2.0371. Type ..ME: Stainless steel 1.4305.

IP64, electronic components potted in a chemical- and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawings.

Weight Acc. to model overview.

Operating instructions DSE...MZ: 304E-63921
DSE...ME: 304E-63923

Versions

Version AConnection type:820E-31142.Connection plug:820E-31141.Version ATPVC cable:Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), grey.

Outer Ø max. 6,7 mm, bending radius min. 60 mm, weight 70 g/m.

Standard length for version AT: 5 m.

Version AH Teflon cable: Part nr. 824L-31841, 2wire, 2 x 0.75 mm², stranded wire

(metal net insulated from the housing), black.

Outer Ø max. 5.0 mm, bending radius min. 80 mm, weight 45 g/m.

Standard length for version AH: 2 m.

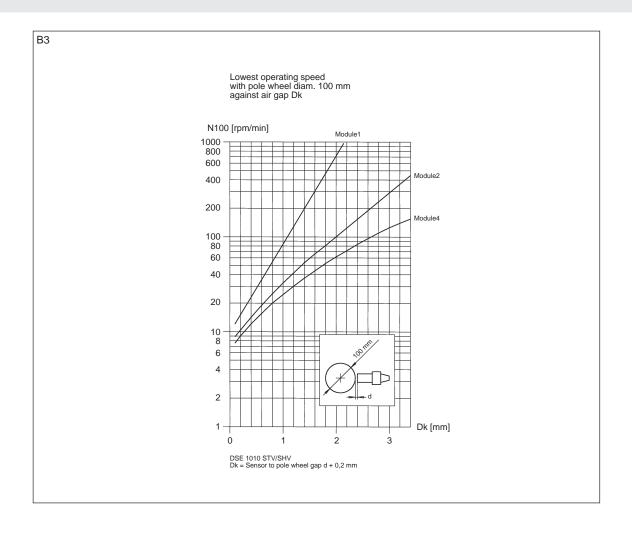
DSE 25ME...AH <u>Connection type:</u> 820E-34902. <u>Connection plug:</u> 820E-34903.

DSE...V

The DSE...V series electromagnetic sensors essentially consist of an iron core with an inductive coil, behind which sits a permanent magnet. A line amplifier is also included. A ferromagnetic pole wheel passing the sensor head then influences the magnetic field, resulting in an A.C. voltage being induced in the coil. The induced voltage is proportional to the rate of flux change and hence pole wheel speed.

The level of induced voltage is dependent on the sensor to pole wheel air gap and the size and form of the pole wheel. Additionally, the induced voltage level is as a first approximation proportional to the angular speed of the pole wheel and hence of the shaft being measured (see diagram B3).

These sensors have a transistor amplifier, which is overdriven in normal operation by the induced voltage. The output signal level is then essentially constant and determined by the external supply and a pull up resistor. Should the induced voltage be too low the output sits at 1...3 V.


Where the sensor has a trigger stage, the output is digital even at low speeds i.e. low or high.

Electromagnetic sensors with line amplifiers require an external supply but may be 2 or 3 wire devices. They may generally be used wherever the speed to be measured or controlled exceeds 10 rpm.

GENERAL

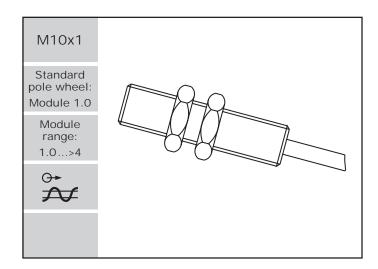
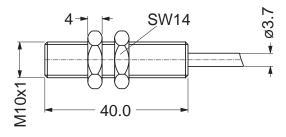

DSE ...V

DIAGRAM AND CHARCTERISTICS

DSE 1010 S.V



Features

- With line amplifier (2wire sensor)
- High temperatur version

Dimensions

Version S

Турее	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1010 STV	304Z-03351	cable 3m	M10x1	75	-25+85	previously FTG 262 S
DSE 1010 SHV	304Z-03352	cable 2m	M10x1	40	-40+125	previously FTG 262 SH

Type DSE 1010 Version S.V

Technical Data

Supply

Power supply Supply voltage: +5...+30 V D.C., external pull-up resistance min. 1 kΩ.

No reverse polarity protection.

Current consumption: Dependent on pull-up resistance.

Input

Frequency range ~10 Hz...50 kHz

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

Module ≥ 1, min. tooth width 3 mm, side offset with min. tooth width: < 0.2 mm,

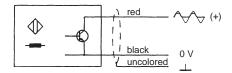
eccentricity < 0.2 mm.

Pole wheel-sensor gap ≥ 0.1 mm. Gap depending on rotational speed (circumferential)

and module acc. to diagram B3.

Output

Signal output The output signal corresponds to an overdriven half sine wave.


<u>Open collector output:</u> With an external pull-up resistance of at least 1 k Ω across an auxiliary voltage Vcc = +5...+30 V and with minimum detectable speed N100 according to diagram B3, the

peak-to-peak output voltage is 10% and 90% of the auxiliary voltage. \overline{TTL} : The driving of TTL gates with hysteresis requires a pull up resistance of $4.7~\mathrm{k}\Omega$ across +5 V: $U_\mathrm{lo}=0.4~\mathrm{V}$ with sink current = $2.6~\mathrm{mA/U}_\mathrm{hi}=2.4~\mathrm{V}$.

2wire sensor: Control of frequency measuring instruments with ferrostat or NAMUR inputs with

device-side pull-up resistance = 820 Ω across Vcc = +12...+24 V.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP68 (head), IP67 (cable connection).

Vibration immunity 5 g_n in the range 5...2000 Hz.

Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature -25...+85 °C (version T) -40...+125 °C (version H)

Insulation Housing, cable screen and system galvanically isolated (500 V/50Hz/1 min).

Gehäuse German silver (Argentan) 2.0770, front side hermetically sealed, electronic components

pottet in a chemical- and age-proof synthetic resin. Dimensions acc. to dimensional drawing.

Weight Acc. to model overview.

Operating instructions 304E-63925

Versions

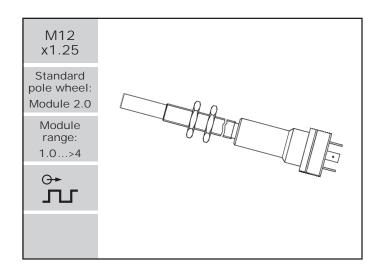
Version ST PVC cable: Part nr. 824L-35546, 2wire, 2 x 0.22 mm² (AWG 24), stranded wire

(thermoplastic screening with continuity conductor, insulated from housing), grey.

Outer Ø max. 4.2 mm, bending radius min. 60 mm, weight 19 g/m.

Version SH <u>Teflon cable:</u> Part nr. 824L-35647, 4wire, 2 x 0.092 mm² (AWG 28), stranded wire

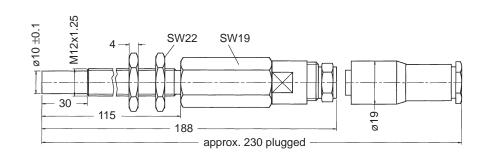
(metal net insulated from the housing), white. Outer Ø max. 2.4 mm, bending radius min. 24 mm, weight 9 g/m.


Standard length for version SH: 2 m.

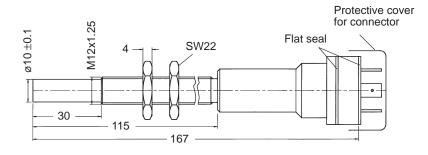
113

DSE

DSE 1210 AHV



Features


- With line amplifier
- Turbocharger application

Dimensions

Version A

Version .04

Version .05

Турее	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSE 1210.04 AHV	304Z-03964	Connector	M12x1.25	200	-25+85 (+125)	previously FTG 233.01 A
DSE 1210.05 AHV	304Z-03965	Connector	M12x1.25	170	-25+110 (+125)	previously FTG 233.02 A

Electromagnetic Sensor with line amplifier

Type DSE 1210 Version AHV

Technical Data

Supply

Power supply Supply voltage: 24 V D.C., internal pull up resistor, ripple 25 mVpp max.

Reverse polarity protection.

Current consumption: max. 12 mA without load.

Input

Frequency range ~10 Hz...50 kHz (acc. to turbocharger specification).

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/ $\overline{1}$.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Ferromagnetic toothed wheel i.e. Ust37-2, involute gear form preferred.

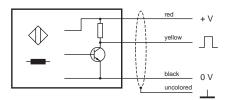
Module \geq 1, min. tooth width 3 mm, side offset with min. tooth width: < 0.2 mm,

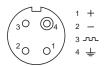
eccentricity < 0.2 mm or turbocharger specification.

Pole wheel-sensor gap ≥ 0.1 mm. Gap depending on rotational speed (circumferential)

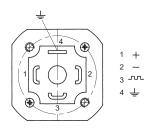
and module acc. to diagram.

Output


Signal output The output signal corresponds to an overdriven half sine wave.


The output is connected to the positive side of the supply via internal 2.4 k Ω pull up resistor.

Sink current = 10 mA max.


Saturation voltage at a 10 mA sink current < 1.25 V.

Connection

DSE 1210.04 AHV

Shield to be connected with 0 V of power supply.

DSE 1210.05 AHV

Mechanical

Protection class Version .04: IP68 (head), IP67 (jack connection)

Version .05: IP68 (head), IP65 (jack connection)

Vibration immunity 5 g_n in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing, cable screen and system galvanically isolated (500 V/50 Hz/1 min).

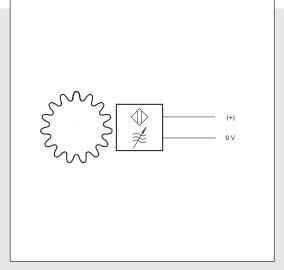
Housing Stainless steel 1.4305, front side hermetically sealed, electronic components pottet in a chemical-

and age-proof synthetic resin. Material and dimensions acc. to dimensional drawing.

Weight Acc. to model overview.

Operating instructions 304E-63925

Versions


Version .04 AHConnection type:820A-36309.Connection plug:820A-36310.Version .05 AHConnection type:820P-36090.Connection plug:820P-36089.

DSE ...V

HF Sensor (inductive) without amplifier

DSH...N/Z

HF speed sensors without amplifier are suitable for generating speed signals from metallic (not necessarily ferrous) pole wheels.

The sensing element is an oscillator circuit at the face of the sensor. A metallic pole wheel passing the sensor head influences the damping in the oscillator. This modulates the current consumption of the HF oscillator and superimposes an A.C. signal on the D.C. biased output.

If the following instrumentation is A.C. coupled, the lower operating frequency should be allowed for.

The static behaviour of these HF sensors allow their use for zero speed detection.

Where Ex certified versions are used in hazardous areas the certificate guidelines must be followed!

Connection

The sensor connections are sensitive to interference. The following 2 points should therefore be noted:

- 1) A screened cable must be used for connections. The screen must be taken all the way to the terminal provided on the instrument and not earthed.
- 2) The sensor cables should be laid as far from large electrical machines as possible and must never be laid parallel to high current cables.

The maximum permissible cable length is a function of sensor supply voltage, cable routing along with cable capacitance and inductance and sensor frequency. In general it is advantageous to keep the distance between sensor and instrumentation to a minimum. The sensor cable may be lengthened via suitable IP 20 terminals and JAQUET cable p/n 824L-30894.

Under favourable operating conditions and when used with JAQUET cable p/n 824L-30894 the following transmission lengths are possible:

100 m max. for sensor frequencies to 4 kHz

40 m max. for sensor frequencies to 10 kHz

20 m max. for sensor frequencies to 20 kHz

Mounting

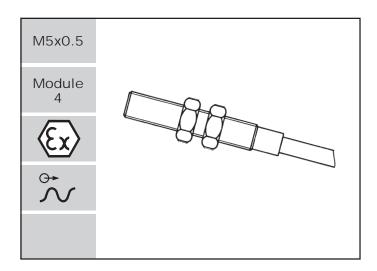
The sensor is mounted with its centre over the centre of the pole wheel. With gear wheels or slots and radial mounting, the sensor is normally fixed over the middle of the wheel. Dependent on the gear width, a degree of axial movement is permissible. The centre of the sensor must however remain a minimum of 3 mm from the edge of the wheel under all operating conditions.

It is important to ensure a rigid, vibration free mounting of the sensor. Sensor vibration in relation to the pole wheel may induce additional pulses.

The sensors are insensitive to oil, grease etc. and can be used in arduous conditions. During installation the optimum sensor to pole wheel gap should be set. On no account should the sensor come into contact with the pole wheel during operation. As a guide, an air gap of 0.4 mm can be set. The air gap does not influence the calibration of the system.

HF sensors can be used with numerous metal pole wheels. Please note though that metals which are more conductive than steel reduce the air gap range since they dampen the sensor to a lesser extent.

UNCTION

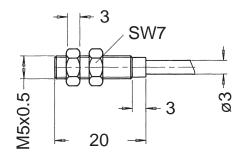

DSH ...N/Z

CONNECTION AND INSTALLATION

117

DSH 0540 KTN

Features


- Without amplifier
- Static characteristic
- Available as model DSH 0540 KTN Ex in intrinsically safe class EEx ia II C T6...T1
- Sensing of any metallic pole wheels
- No residual magnetic field

Dimensions

Version K

Version K, Ex

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSH 0540 KTN	830G-35649	Cable 2 m	M5x0.5	30	-25+75	Standard
DSH 0540 KTN Ex	830G-35932	Cable 2 m	M5x0.5	30	-25+100	Subject to certificate

HF Sensor (inductive) without amplifier

Type DSH 0540 Version KTN

Technical Data

Supply

Power supply: $\underline{Power supply}$: 5...15 V D.C. with $R_i = 1 \text{ k}\Omega$.

Current consumption: damped: <1 mA, not damped: >4 mA, max. permissible: 10 mA.

Operational data NAMUR

(DIN 19234/EN 50014/020) Ub = 8.2 V

 $RL = 1 k\Omega$ t = 20 °C

I = 1.8 mA at a distance of 0.8 mm to reference measuring plate 4.5x4.5x0.3 mm³ Fe

Signal frequency 0...5 kHz at 0.4 mm max. nominal distance

Input at 50 mV $_{\rm ms}$ with 820 Ω output resistance:

Frequency range 0 Hz...20 kHz

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-Bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

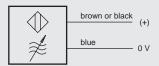
Pole wheel Toothed wheel (involute gear form), wheel with holes, impeller wheel, slotted wheel or equal made

of metallic material. Width ≥ 6 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with pole wheel module ≥ 4 : 0.3...0.8 mm.

Output

Signal output Signal current depends on pole wheel and pole wheel-sensor gap.


 $\frac{Current\ consumption}{\text{connected to D.C.}}\ \text{smA not damped, 1...3 mA damped, via pull-up resistance 820}\ \Omega$ connected to D.C. voltage. The change in voltage-across the resistor is the output signal.

Pole wheel's material affects the damping characteristic.

For the working distance, note the reduction factor for each material as follows:

Steel St 37	Chrom-Nickel-Steel	Brass	Aluminium	Copper
1.0	0.85	0.5	0.4	0.3

Connection

Mechanical

Protection class IP67 (head), IP67 (cable connection).

Vibration immunity $a \le 1 \text{ mm}, f \le 55 \text{ Hz}$ (equivalent to max. 10 g_n).

Shock immunity 30 g₀ during 11 ms, half sine wave.

Operating temperature Acc. to model overwiew.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

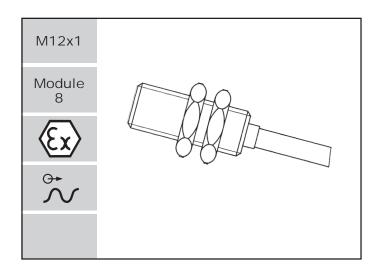
Housing Housing material stainless steel 1.4305.

Weight Acc. to model overwiew.

Operating instructions Nr. 493 standard version. 4-110.839 intrinsically safe version.

Versions

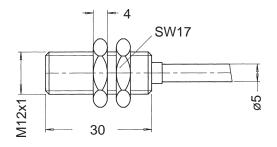
Version KT <u>PVC-cable:</u> 2wire, 2 x 0.14 mm² (AWG26), outer Ø max. 3 mm,


bending radius min. 45 mm, weight 12 g/m.

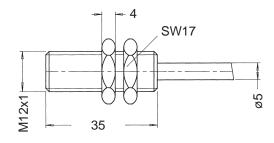
...N/Z

DSH

DSH 1280 KTN



Features


- Without amplifier
- Static characteristic
- Available as model DSH 1280 KTN Ex in intrinsically safe class EEx ia II C T6...T1
- Sensing of any metallic pole wheel
- No residual magnetic field

Dimensions

Version K

Version K, Ex

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSH 1280 KTN	830G-35650	Cable 2 m	M12x1	56	-25+75	Standard
DSH 1280 KTN Ex	830G-35933	Cable 2 m	M12x1	56	-25+100	Subject to certificate

HF Sensor (inductive) without amplifier

Type DSH 1280 Version KTN

Technical Data

Supply

Power supply: $\underline{Power supply}$: 5...15 V D.C., with R₁ = 1 k Ω .

Current consumption: damped: <1 mA, not damped: >4 mA, max. permissible: 10 mA.

Operational data NAMUR

(DIN 19234/EN 50014/020)

Ub = 8.2 VRL = 1 kΩt = 20 °C

I = 1.8 mA at a distance of 2.0 mm to reference measuring plate 12x12x1 mm³ Fe

Signal frequency 0...2 kHz at 1.0 mm max. nominal distance.

Input at 50 mV $_{\rm ms}$ with 820 Ω output resistance:

Frequency range 0 Hz...20 kHz

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-Bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Toothed wheel (involute gear form), wheel with holes, impeller wheel, slotted wheel or equal made

of metallic material. Width ≥ 6 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap with pole wheel module ≥ 8: 0.8...2.0 mm.

Output

Signal output Signal current i depends on pole wheel and pole wheel-sensor gap.

 $\frac{Current\ consumption}{5...8\ mA\ not\ damped,\ 1...3\ mA\ damped,\ via\ pull-up\ resistance\ 820\ \Omega}{connected\ to\ D.C.\ voltage.\ The\ change\ in\ voltage\ across\ the\ resistor\ is\ the\ output\ signal.}$

Pole wheel's material affects the damping characteristic.

For the working distance, note the reduction factor for each material as follows:

Steel St 37	Chrom-Nickel-Steel	Brass	Aluminium	Copper
1.0	0.85	0.5	0.4	0.3

Connection

Mechanical

Protection class IP67 (head), IP67 (cable connection). Vibration immunity $a \le 1 \text{ mm}, f \le 55 \text{ Hz}$ (equivalent to max. 10 g_n).

Shock immunity 30 g_n during 11 ms, half sine wave.

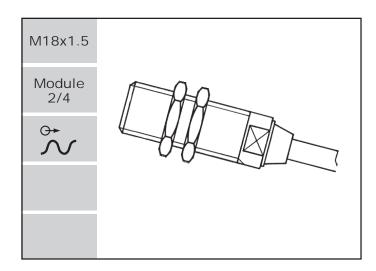
Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing <u>Housing material:</u> Version KTN: Brass nickel plated. Version KTN Ex: stainless steel

Weight Acc. to model overwiew.

Operating instructions Nr. 493 standard version. 4-110.840 intrinsically safe version.

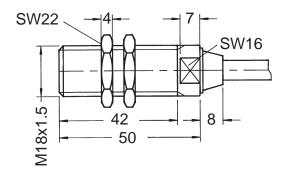
Versions


Version KT <u>PVC-cable:</u> 2wire, 2 x 0.34 mm² (AWG22), outer Ø max. 5 mm,

bending radius min. 75 mm, weight 17 g/m.

DSH ...N/Z

DSH 1820/1840 S.N



Features

- Without amplifier
- Static characteristic
- Sensing of any metallic pole wheel
- No residual magnetic field

Dimensions

Version S

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSH 1820.00 STZ DSH 1840.00 STZ	304Z-03172 304Z-03173	Cable 1.5 m Cable 1.5 m	M18x1.5 M18x1.5	140 145	-25+75 -25+75	previously FTG 292 previously FTG 294
DSH 1840.00 SHZ	304Z-03467	Cable 1.5 m	M18x1.5	145	-25+125	previously FTG 294S74

HF Sensor (inductive) without amplifier

Type DSH 1820/1840 Version S.N

Technical Data

Supply

Power supply Power supply: 12 V \pm 20% via 820 Ω .

Current consumption: max. 8 mA.

Input

0 Hz...20 kHz Frequency range

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-Bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Toothed wheel (involute gear form), wheel with holes, impeller wheel, slotted wheel or equal made

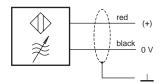
of metallic material. Width ≥ 6 mm, eccentricity < 0.2 mm.

0.5...1.0 mm at DSH 1820.XX Pole wheel-sensor gap at Module ≥ 2 :

Module ≥ 4: 1.0...2.2 mm at DSH 1840.XX

Output

Signal output Signal current i depends on pole wheel and pole wheel-sensor gap.


> Current consumption 5...8 mA not damped, 1...3 mA damped, via pull-up resistance 820 Ω connected to D.C. voltage. The change in voltage across the resistor is the output signal.

Pole wheel's material affects the damping characteristic.

For the working distance, note the reduction factor for each material as follows:

Steel St 37	Chrom-Nickel-Steel	Brass	Aluminium	Copper
1.0	0.85	0.5	0.4	0.3

Connection

Shield to be connected to 0 V of power supply.

Mechanical

Protection class IP67 (head), IP67 (cable connection). Vibration immunity 5 g_a in the range 5...2000 Hz. Shock immunity 50 g_n during 20 ms, half sine wave.

Insulation Housing, cable shield and electronics galvanically isolated. (500 V/50 Hz/ 1 min.) Housing

Aluminium alloy AlMgSiPbF28, 3.0615 black anodized, front side sealed, electronic comoponents potted in a chemical- and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawing.

Acc. to model overwiew.

Operating instructions 304E-63952

Versions

Weight

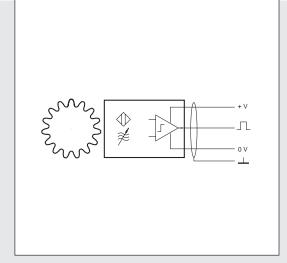
PVC-cable: Part nr. 824L-30894, 2wire, 2 x 0.75 mm², stranded wire Version ST

(metal net, insulated from housing), grey. Outer Ø max. 6.7 mm,

bending radius min. 60 mm, weight 70 g/m.

Teflon-wire: Part nr. 824L-33024, 3wire, 3 x 0.21 mm² (AWG 24), stranded wire Version SH

(metal net, insulated from housing), green. Outer Ø max. 4 mm, bending radius min 60 mm,


weight 32 g/m.

DSH ...N/Z

HF Sensor (inductive) with amplifier

DSH...V

HF speed sensors with amplifier are suitable for generating speed signals from metallic (not necessarily ferrous) pole wheels.

They exhibit either dynamic or static behaviour with signal generation guaranteed down to between 0 and 0.05Hz.

The sensing element is an oscillator circuit at the face of the sensor. A metallic pole wheel passing the sensor head influences the damping in the oscillator. This modulation is converted to a square wave output signal by an amplifier with trigger characteristics and a short circuit output stage.

CONNECTION AND INSTALLATION

Connection

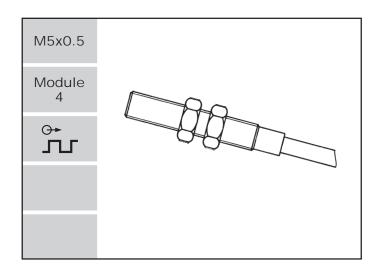
The sensor connections are sensitive to interference. The following 2 points should therefore be noted:

- 1) A screened cable must be used for connections. The screen must be taken all the way to the terminal provided on the instrument and not earthed.
- 2) The sensor cables should be laid as far from large electrical machines as possible and must never be laid parallel to high current cables.

The maximum permissible cable length is a function of sensor supply voltage, cable routing along with cable capacitance and inductance and the maximum sensor frequency.

In general it is advantageous to keep the distance between sensor and instrumentation to a minimum. The sensor cable may be lengthened via suitable IP 20 terminals and JAQUET cable p/n 824L-31081.

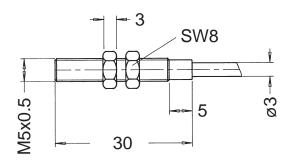
Mounting


The sensor is mounted with its centre over the centre of the pole wheel. With gear wheels or slots and radial mounting, the sensor is normally fixed over the middle of the wheel. Dependent on the gear width, a degree of axial movement is permissible. The centre of the sensor must however remain a minimum of 3 mm from the edge of the wheel under all operating conditions.

It is important to ensure a rigid, vibration free mounting of the sensor. Sensor vibration in relation to the pole wheel may induce additional pulses.

The sensors are insensitive to oil, grease etc. and can be used in arduous conditions. Should the cable come into contact with aggressive materials then teflon cable should be specified. During installation the optimum sensor to pole wheel gap should be set. On no account should the sensor come into contact with the pole wheel during operation. The air gap does not influence the calibration of the system.

DSH 0540 KTV



Features

- With signal amplifier
- Static characteristic
- Sensing any metallic pole wheel
- No residual magnetic field

Dimensions

Version KTV

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSH 0540 KTV	830G-35651	Cable 2 m	M5x0.5	36	-25+75	_

HF Sensor (inductive) with amplifier

Type DSH 0540 Version KTV

Technical Data

Supply

Power supply: 10...30 V D.C., max. superimposed A.C. voltage 25 mVpp, Power supply

protected against reverse polarity.

Current consumption: max. 10 mA at 12 V.

Input

Frequency range 0 Hz...5 kHz with reference measuring plate 4.5x4.5x0.3 mm³ Fe.

Noise generator between housing and electronics. Noise immunity

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Toothed wheel (involute gear form), wheel with holes, impeller wheel, slotted wheel or equal made

of metallic material. Width ≥ 6 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap d: Toothed wheel St 37-2

≥ Module 4: 0.2...0.4 mm (max. 2 kHz)

Slotted wheel St 37-2

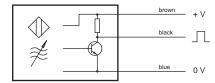
(max. 5 kHz) acc. to EN 50010: 0.2...0.4 mm

(max. 2 kHz) 0.2...0.8 mm

Output

Signal output Square wave signals, open-collector, D.C. coupled with the supply

(negative pole = reference voltage), sink current max. 100 mA.


Output voltage LO: < 2.5 V at I = 100 mA, short circuit proof and protected against reverse polarity.

Pole wheel's material affects the damping characteristic. For the working distance, note the

reduction factor for each material as follows:

Steel St 37	Chrom-Nickel-Steel	Brass	Aluminium	Copper
1.0	0.85	0.5	0.4	0.3

Connection

Mechanical

Protection class IP67 (head), IP67 (cable connection).

Vibration immunity a \leq 1 mm, f \leq 55 Hz (equivalent to max 10 g_n).

Shock immunity 30 g during 11 ms, half sine wave.

Operating temperature

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min). Housing Chrom-Nickel-Steel, electronic components potted in a chemical-

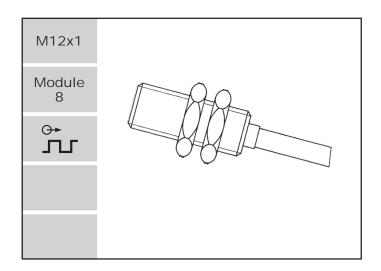
and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawing.

Weight Acc. to model overview.

Operating instructions Nr. 490

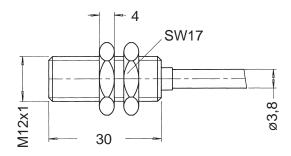
Versions


Version KT PVC-cable: 3wire, 3 x 0.14 mm2 (AWG 26).

Outer Ø max. 3.0 mm, bending radius min. 45 mm,

weight 15 g/m.

DSH 1280 KTV



Features

- With signal amplifier
- Static characteristic
- Sensing any metallic pole wheel
- No residual magnetic field

Dimensions

Version KTV

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSH 1280 KTV	830G-35652	Cable 2 m	M12x1	64	-25+75	_

HF Sensor (inductive) with amplifier

Type DSH 1280 Version KTV

Technical Data

Supply

Power supply: 10....30 V D.C., max. superimposed A.C. voltage 25 mVpp, Power supply

protected against reverse polarity.

Current consumption: max. 10 mA at 12 V.

Input

Frequency range 0 Hz...2 kHz with reference measuring plate 12x12x1 mm³ Fe.

Noise generator between housing and electronics. Noise immunity

1.5 kV/1.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Toothed wheel (involute gear form), wheel with holes, impeller wheel, slotted wheel or equal made

of metallic material. Width ≥ 6 mm, eccentricity < 0.2 mm.

Pole wheel-sensor gap d: Toothed wheel St 37-2

≥ Module 4: 0.8...1.2 mm (max. 0.8 kHz)

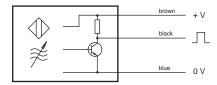
Slotted wheel St 37-2

acc. to EN 50010: 0.2...0.4 mm (max. 2 kHz)

(max. 0.8 kHz) 0.2...0.8 mm

Output

Signal output Square wave signals, open-collector, D.C. coupled with the supply


(negative pole = reference voltage), sink current max. 250 mA.

Output voltage LO: < 2.5 V at I = 250 mA, short circuit proof and protected against reverse polarity. Pole wheel's material affects the damping characteristic. For the working distance, note the

reduction factor for each material as follows:

Steel St 37	Chrom-Nickel-Steel	Brass	Aluminium	Copper
1.0	0.85	0.5	0.4	0.3

Connection

Mechanical

Protection class IP67 (head), IP67 (cable connection).

Vibration immunity a \leq 1 mm, f \leq 55 Hz (equivalent to max 10g_o).

Shock immunity 30 g_o during 11 ms, half sine wave.

Operating temperature -25...+75 °C

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min). Chrom-Nickel-Steel, electronic components potted in a chemical-Housing

and age-proof synthetic resin.

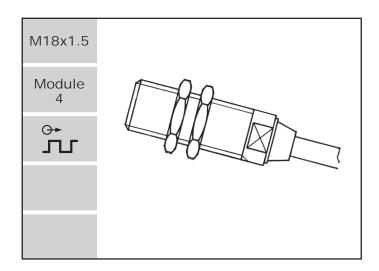
Dimensions acc. to model overview and dimensional drawing.

Weight Acc. to model overview.

Operating instructions Nr. 490

Versions

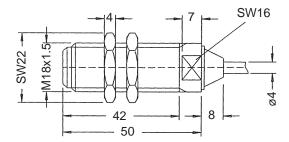
Version KT PVC-cable: 3wire, 3 x 0.34 mm² (AWG 22).


Outer Ø max. 3.8 mm, bending radius min. 55 mm,

weight 19 g/m.

DSH

DSH 1840 SHV



Features

- With signal amplifier
- Dynamic characteristic
- Lower frequency limit: 0.1 Hz
- Sensing of any metallic pole wheel
- No residual magnetic field

Dimensions

Version SHV

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSH 1840.01 SHV	374Z-04025	Cable 2 m	M18x1.5	100	-30+125	_

HF Sensor (inductive) with amplifier

Type DSH 1840 Version SHV

Technical Data

Supply

Power supply Power supply: 10....30 V D.C., max. superimposed A.C. voltage 25 mVpp,

protected against reverse polarity.

<u>Current consumption:</u> max. 12 mA at 12 V.

Input

Frequency range 0.1 Hz...20 kHz.

Noise immunity Cable shield connected to the supply negative pole. Noise generator between

housing and electronics.

1.5 kV/ $\overline{1}$.5 ms/max. 5 Hz (source resistance 500 Ω), 2.0 kV/HF-bursts (level 4 in accordance with IEC 801-4),

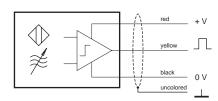
2.5 kV/1 MHz damped resonance (class III in accordance with IEC 255-4).

Pole wheel Made of metal, module 4...8 or acc. to the specification below,

eccentricity < 0.2 mm.

Pole wheel-sensor gap at: Toothed wheel (St 37), module 4: 0.2...0.4 mm

Impeller pole wheel (Aluminium):


Blade	Thickness	Width	Sensor air gap
4.0 mm	15 mm	6.5 mm	0.22.0 mm
2.1 mm	15 mm	7.5 mm	0.21.5 mm

Output

Signal output Square wave signals from push-pull stage, D.C. coupled with the supply

(negative pole = reference voltage, max. load 25 mÅ, <u>Output voltage HI:</u> > (Power supply - 2.5 V) at I = 15 mA <u>Output voltage LO:</u> < 1.5 V at I = 15 mA, short circuit proof and protected against reverse polarity.

Connection

Shield to be connected with 0 V of power supply.

Mechanical

Protection class IP67 (head), IP67 (cable connection). Vibration immunity $5 \, \mathrm{g_n}$ in thr range $5...2000 \, \mathrm{Hz}$. Shock immunity $50 \, \mathrm{g_n}$ during 20 ms, half sine wave.

Operating temperature Acc. to model overview.

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

Housing Aluminium alloy 3.0615, black anodized, electronic components potted in a chemical- and age-proof

synthetic resin. Caution: impact sensitive.

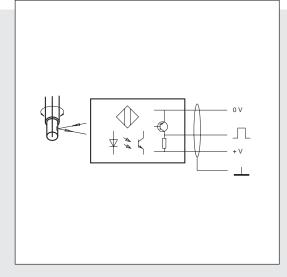
Dimensions acc. to model overview and dimensional drawing.

Weight Acc. to model overview.

Operating instructions 347D-63953

Versions

Version SH Teflon cable: Part nr. 824L-35053, 4wire, 4 x 0.24 mm² (AWG 24),


stranded wire (metal net insulated from housing), white.

Outer Ø max. 4,0 mm, bending radius min. 60 mm, weight 32 g/m.

DSH ...V

Photo-electric reflective sensor

Photoelectric reflective sensors are suitable for speed measurements down to zero speed. They can also be used for simple position measurements.

These sensors essentially consist of an optoelectronic sensor that is illuminated by a LED. The phototransistor signal is amplified by an amplifier having a trigger characteristic. The LED and phototransistor sit adjacent on the same plane behind common optics. One or more equidistant reflective markers on the shaft being sensed are illuminated by the LED integrated in the sensor.

The light is only reflected to the phototransistor when the marker passes by. The phototransistor signal is amplified and provided as a square wave output signal with frequency proportional to speed.

Connection

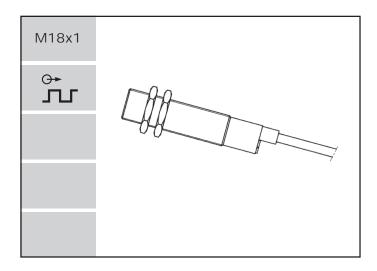
The sensor connections are sensitive to interference. The following 2 points should therefore be noted:

- 1) A screened 3 core cable must be used for connections. The screen must be taken all the way to the terminal provided on the instrument and not earthed.
- 2) The sensor cables should be laid as far from large electrical machines as possible and must never be laid parallel to high current cables.

The maximum permissible cable length is a function of sensor supply voltage, cable routing along with cable capacitance and inductance and the maximum sensor frequency.

In general it is advantageous to keep the distance between sensor and instrumentation to a minimum. The sensor cable may be lengthened via suitable IP 20 terminals and JAQUET cable p/n 824L-31081.

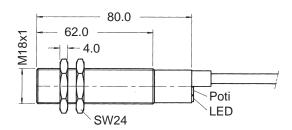
Mounting


The sensor is mounted with its centre over the centre of the reflective markers. With gear wheels or slots and radial mounting, the sensor is normally fixed over the middle of the wheel. A degree of axial movement is then permissible.

It is important to ensure a rigid, vibration free mounting of the sensor. Sensor vibration in relation to the pole wheel may induce additional pulses.

The sensors are insensitive to oil, grease etc. and can be used in arduous conditions. Eventual interference through external light must be avoided and the optics should not become obscured during operation. Should the cable come into contact with aggressive materials then teflon cable should be specified. During installation the optimum sensor to shaft gap should be set. The air gap does not influence the calibration of the system.

DSR 18200 K



Features

- With amplifier
- Static characteristic
- No residual magnetic field
- Reflective markers at target
- Open collector output
- Without internal pull-up resistors

DImensions

Version K

Туре	Part nr.	Connection	Housing thread	Weight [g]	Operating temperature [°C]	Notes
DSR 18200 KTV	830G-35931	Cable 2 m	M18x1	125	-10+60	Standard

Photo-electric reflective sensor

Type DSR 18200 Version K

Technical Data

Supply

Power supply Supply voltage 10...30 D.C.,

max. superimposed A.C. voltage 25 mVpp,protected against reverse polarity.

Current consumption: max. 40 mA.

Input

Frequency range 0 Hz...1.5 kHz

Noise immunity Noise generator between housing and electronics: 1.5 kV/1.5 ms, max.5 Hz (source resistance 500 Ω)

2.0 kV/HF-burst (level 4 acc. to IEC 801-4)

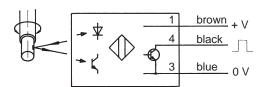
2.5 kV/1 MHz damped resonance (class III acc. to IEC 255-4).

Reflective marker 12.7 x 12.7 mm, retroreflexive, 50 candela/lux/m².

Measuring shaft-sensor gap: adjustable in the range of 0...200 mm with trimming potentiometer.

Output

2 signal outputs 1 normally open contact, square wave signals, open collector, D.C. coupled with power supply


(negative pole = reference voltage), max. load 100 mA.

Open collector outputs: external pull-up resistant required.

Output voltage LO: < 2.5 V at I = 100 mA.

Short circuit proof and protected against reverse polarity.

Connection

Mechanical

 $\begin{array}{ll} \mbox{Protection class} & \mbox{IP65 (head and connecting side)}. \\ \mbox{Vibration immunity} & \mbox{3 g}_{\mbox{\tiny n}} \mbox{ in the range 4...100 Hz.} \\ \mbox{Shock immunity} & \mbox{20 g}_{\mbox{\tiny n}} \mbox{ during 11 ms, half sine wave.} \\ \end{array}$

Operating temperature -10...+60 °C

Insulation Housing and electronics galvanically isolated (500 V/50 Hz/1 min).

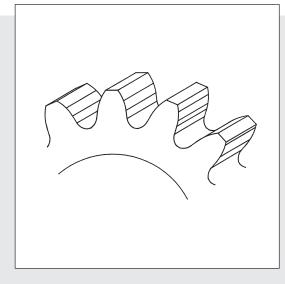
Housing Brass nickel plated, optics at front side (Caution: impact sensitive).

Components potted in a chemial- and age-proof synthetic resin.

Dimensions acc. to model overview and dimensional drawing.

Weight 125 g

Connecting cable <u>PVC-cable:</u> 3wire, 2 m, 3 x 0.5 mm² (AWG 20).

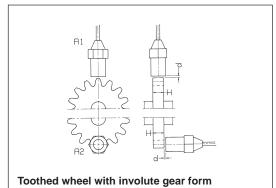

Outer Ø max 5 mm, bending radius min. 75 mm, weight 15 g/m.

Operating instructions 830E-63927

DSR

Pole wheels

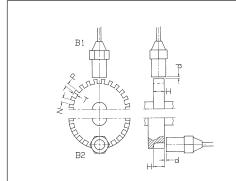
A pole wheel on the target shaft is required when using contactless sensors to generate a signal. Often an existing gear wheel can be used but where none is present a special gear, slotted or holed disk would be added.


Where the shaft is very large a cost effective alternative is to add a pole band (see following section).

Other existing parts such as clutches, flanges or shafts, to which slots, holes or pegs can be added may also be suitable as the pole wheel. See notes on pole wheel geometry.

GENERAL

FTP


В

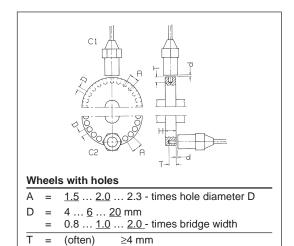
≥6 mm

4 ... 8

≥4 mm

A1 radial sensing: Module
B (often)
A2 axial sensing: Module

Slotted wheels


 $P = \underbrace{0.5 \dots 1.0}_{0.1} \dots 1.3 - \text{times slot width N}$ $N = \underbrace{3 \dots 6}_{0.1} \dots \underbrace{20}_{0.1} \text{ mm}$

 $= 0.8 \dots \underline{1.0} \dots \underline{2.0} \text{ - times pole width P}$ B1 radial sensing: T (often) $\geq 4 \text{ mm}$

B (often)

≥6 mm

B2 axial sensing: T (often) \geq 4 mm B (often) \geq 6 mm

Pole wheel sensing

This is usually via radially mounted sensors (occasionally via axial mounting). All mounting and operational tolerances should be taken into account when determining the sensor/pole wheel air gap. In the case of axial mounting the often considerable axial shaft play should be allowed for.

To maintain a relatively constant mark:space ratio of the sensor output signal during rotation of the pole wheel, the pole wheel/sensor air gap should be kept as small as possible.

Material

Sensors that operate on the principle of changes to the magnetic flux require a pole wheel out of ferro-magnetic material (iron, steel, castings). Stainless steel and plating with 8 % CrNi are not suitable.

For certain applications (e.g. in turbochargers or for sensing with a large air gap) pole wheels having permanent magnets can be used. HF sensors require a pole wheel out of any metallic material.

Target geometry

For optimum signal generation, pole wheels having an involute gear form should ideally be used, or alternatively slotted or holed disks. Stamped sections (pole bands), bolts and screw heads are also possibilities. It must however be ensured, that the air gap between the part and the sensor remains the same. For optimum sensing the following is recommended:

- Run out and float to be kept to a minimum (< 0.2 mm or < 20% of the air gap).
- Holes or slots to be within the dimensions and gaps shown in the adjacent drawings (recommended values underlined).
- Holes (slots) to be within the limits shown in the adjacent drawings or corresponding to the tooth height for the gear module specified.

Geometric relationships with disk pole wheels

The following relationships are valid for involute gear wheels:

Pitch circumference

Uo [mm] π • do [mm]

with

pitch p [mm]

defined as Tooth centre spacing

on the pitch diameter

and pole count

then

Pitch circumference

Z • p [mm] Uo [mm]

Pitch diameter

do [mm] $Z \bullet p [mm] / \pi$

with

module [mm]

defined as p / π

then

Pitch diameter

do [mm] Z • module [mm]

For optimum power transmission in a gearbox, the pitch diameter for standard gear wheels having involute gear form is:

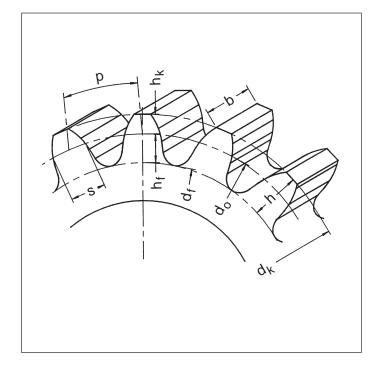
Outer diameter

pitch diameter dk [mm]

+ 2 • module [mm] (Z + 2) • module [mm]

hence:

module [mm] dk/(Z+2)


Extract from DIN 780, standard module series:

... 0.3; 0.35; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0; 1.25; 1.5; 1.75; 2.0; 2.25; 2.5; 2.75; 3.0; 3.25; 3.5; 3.75; 4.0; 4.5; 5.0; 6.0; 7.0; 8.0 ...

Pitch (inch) (Z + 2) / dk (inch)

(Z + 2) • 25.4 / dk [mm]

25.4 / module [mm]

do = pitch diameter dk =outer diameter

df tooth base diameter =

p Z

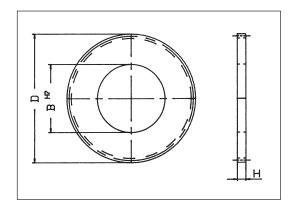
number of poles or teeth =

m = module h tooth height =

hf = tooth base

hk = tooth height

b tooth width =


tooth thickness

The following geometric relationships are valid for gear wheels:

$$m = \frac{t}{\pi} = \frac{do}{7} = \frac{dk}{7+2}$$

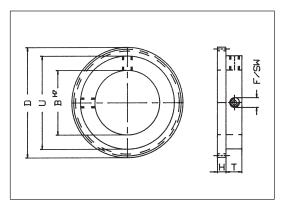
FTP

One piece pole wheels without boss, Series FTP 520

Number of teeth

Module

External diameter D =


Tooth width

B_N = Standard bore (H7 tolerance) B...= Special bore range

Dimensions in mm.

Тур	Part Nr.	Р	М	D	Н	B _N	В	[kg]
FTP 521/30	306F-61549	30	1	32	10	10	10 20	on request
FTP 521/60	306F-61550	60	1	62	10	10	10 45	0.20
FTP 521/120	306F-61551	120	1	122	10	10	10100	0.90
FTP 521/180	306F-61552	180	1	182	10	10	10150	on request
FTP 521/240	306F-61553	240	1	242	10	10	10200	on request
FTP 522/15	306F-61554	15	2	34	15	15	15 20	0.06
FTP 522/30	306F-61555	30	2	64	15	15	15 45	0.30
FTP 522/60	306F-61556	60	2	124	15	15	15100	1.30
FTP 522/90	306F-61557	90	2	184	15	15	15150	3.00
FTP 522/120	306F-61558	120	2	244	15	15	15200	5.20
FTP524/15	306F-61559	15	4	68	20	20	20 40	on request
FTP524/30	306F-61560	30	4	128	20	20	20 90	on request
FTP524/45	306F-61561	45	4	188	20	20	20145	on request
FTP524/60	306F-61562	60	4	248	20	20	20200	on request

Extra fixing holes on request.

One piece pole wheels with boss, Series FTP 530

Number of teeth

Module

External diameter D =

Tooth width

Boss diameter Boss width T =

Standard bore (H7 tolerance) $B_N =$

Special bore range B...=

Thread

SW = Allen key size for the fixing screw

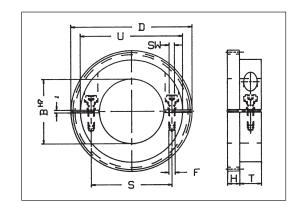
Dimensions in mm.

Тур	Part Nr.	Р	M	D	Н	U	Т	B _N	В	F	SW	[kg]
FTP 531/30	306G-61563	30	1	32	10	24	10	10	10 16	M3	1.5	on request
FTP 531/60	306G-61564	60	1	62	10	48	15	10	10 36	M5	2.5	0.40
FTP 531/120	306G-61565	120	1	122	10	108	20	10	10 88	M8	4.0	2.30
FTP 531/180	306G-61566	180	1	182	10	168	25	10	10140	M10	5.0	on request
FTP 531/240	306G-61567	240	1	242	10	228	30	10	10190	M12	6.0	on request
FTP 532/15	306G-61568	15	2	34	15	24	10	15	15 16	МЗ	1.5	0.08
FTP 532/30	306G-61569	30	2	64	15	48	15	15	15 36	M5	2.5	0.50
FTP 532/60	306G-61570	60	2	124	15	108	20	15	15 88	M8	4.0	2.70
FTP 532/90	306G-61571	90	2	184	15	168	25	15	15140	M10	5.0	7.20
FTP 532/120	306G-61572	120	2	244	15	228	30	15	15190	M12	6.0	14.60
FTP 534/15	306G-61573	15	4	68	20	48	15	20	20 36	M5	2.5	on request
FTP 534/30	306G-61574	30	4	128	20	108	20	20	20 88	M8	4.0	on request
FTP 534/45	306G-61575	45	4	188	20	168	25	20	20140	M10	5.0	on request
FTP 534/60	306G-61576	60	4	248	20	228	30	20	20190	M12	6.0	on request

Two piece pole wheels with boss, Series FTP 540

P = Number of teeth

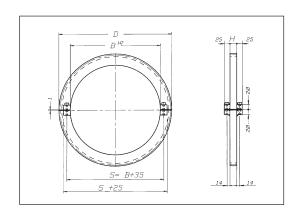
M Module


= External diameter D

Tooth width U = Boss diameter
T = Boss width

B...= Special bore range

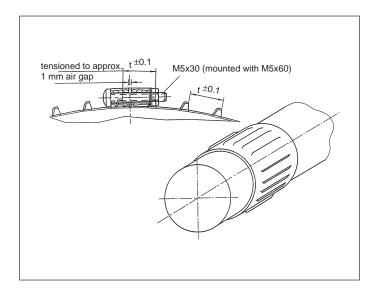
F = Thread


SW = Allen key size for the fixing screw

Тур	Part Nr.	Р	M	D	Н	U	Т	В	F	SW	[kg]
FTP 541/120	306H-61579	120	1	122	10	108	20	1070	M8	6	on request
FTP 541/180	306H-61580	180	1	182	10	168	25	10120	M10		on request
FTP 541/240	306H-61581	240	1	242	10	228	30	10170	M12	10	on request
FTP 542/60	306H-61582	60	2	124	15	108	20	1570	M8	6	2.7
FTP 542/90	306H-61583	90	2	184	15	168	25	15120	M10	8	7.2
FTP 542/120	306H-61584	120	2	244	15	228	30	15170	M12	10	14.6
FTP 544/30	306H-61585	30	4	128	20	108	20	20 70	M8	6	3.1
FTP 544/45	306H-61586	45	4	188	20	168	25	20120	M10	8	8.1
FTP 544/60	306H-61587	60	4	248	20	228	30	20170	M12	10	16.4

Two piece pole wheels with flange, Series FTP 540

Туре	Part Nr.	Module
FTP 540/Flange type	306N-63972	1.0
FTP 540/Flange type	306N-63973	2.0
FTP 540/Flange type	306N-63974	3.0
FTP 540/Flange type	306N-63975	4.0
FTP 540/Flange type	306N-63976	2.5
FTP 540/Flange type	306N-63977	5.0


Order details

Model number, exact shaft diameter.

Other dimensions

on request.

Pole band to shaft

Where a contact less sensor is to be used to generate a signal from a very large shaft, a pole band strapped to the shaft is a proven approach. It is also a cost effective alternative to using a very large pole wheel.

Sensing

This is always via a radially mounted sensor. All mounting and operational tolerances must be allowed for when determining the air gap, in particular the often considerable end float with large shafts.

To maintain a constant signal ratio during one revolution of the shaft the air gap should be kept to a minimum.

Material

The pole bands offered here are made from ferromagnetic material (Steel band Ust 1304-m).

Target geometry

Optimum signal generation is achieved when the pole band has humps, slots or stamped bar sections. It is necessary for the sensor to raised section air gap to remain constant during one revolution. To maintain the tension in the band it is produced so that its length and the section spacing is slightly smaller than the circumference of the shaft. The shaft outside diameter must therefore be specified exactly when ordering.

For optimum sensing the following is recommended:

- Run out and float to be kept to a minimum (< 20% of the width of the raised section).
- Sensor to be mounted over the middle of the raised sections.
- The pole band must sit securely on the shaft and over the whole circumference.
- When the pole band is screwed tight the pole pitch and spacing conform to the specified spacing exactly.

Pole bands series FTP 552

Pole band module > 3 with stamped bar sections

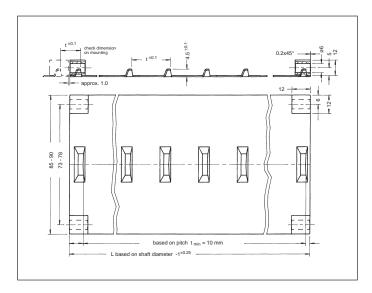
for shafts > 600 mm o.d.

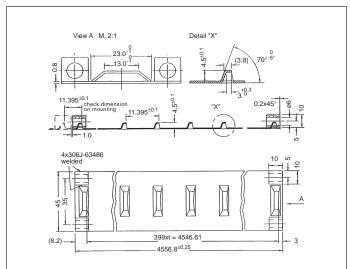
Part. Nr. 306J-72683 Old Type 306J-72491

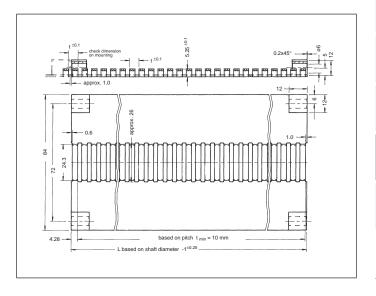
Pole bands series FTP 551

Pole band module > 3 with humps

for shafts > 200 mm o.d. and with limited space.

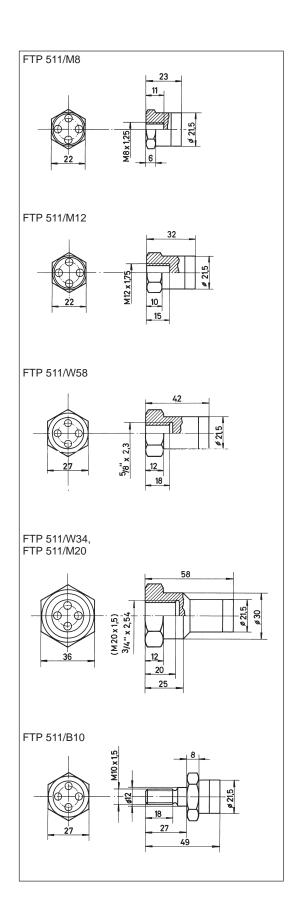

Part. Nr. 306L-72492


Pole bands series FTP 553


Pole band module > 2 with stamped bar sections

for shafts > 200 mm o.d. (Creep detector).

Part. Nr. 306M-72726



FTP

Pole wheels Series FTP 511

Material

Black anodised anticorodal FTP 511/B10 only – stainless steel

Arrangement and number of poles

4 at face

Mounting

Coaxially screwed to turbocharger shaft

Speed range

Lowest: 0...9000 rpm Highest: 0...60000 rpm

Туре	Part-Nr.	Thread [g]	Weight
FTP 511/M8	306A-71570	M8x1.25	23
FTP 511/M12	306A-71571	M12x1.75	27
FTP 511/W58	306A-71572	5/8"x2.3	43
FTP 511/W34 FTP 511/M20	306A-71573 306A-71575	3/4"x2.54 M20x1.5	81 81
FTP 511/B10	306A-71574	M10x1.5	84

Turbocharger pole wheels Series FTP 511

Turbocharger model	Notes	Pole wheel	Sensor
RR150, 180, 212	TC with filter silencer or air intake reduction	_	FTG 232 A od.S
VTC 214, 254, 304	TC with filter silencer or air intake reduction	_	FTG 232 A or S
VTC 214, 254, 304	_	_	FTG 233 A or S
VTR 160	Bearing WE, WF Bearing WE, WP	FTP 511/M12 —	FTG 103 FTG 233 A or S
VTR 161	Bearing WP Bearing WE	_	FTG 233 A or S FTG 233 A or S
VTR 200	Bearing WE Bearing WE, WP	FTP 511/W58 —	FTG 103 FTG 233 A or S
VTR 201	Bearing WP	_	FTG 233 A or S
VTR 250	Bearing WE, WF Bearing WE, WP	FTP511/W34 —	FTG 103 FTG 233 A or S
VTR 251	Bearing WP	_	FTG 233 A or S
VTR 320	Bearing WE, GF Bearing WF Bearing WF G2F Bearing WE, WP	FTP 511/W34 FTP 511/W34 FTP 511/W34	FTG 103 FTG 103 FTG 104 FTG 233 A or S
VTR 321	Bearing WP	_	FTG 233 A or S
VTR 400	Bearing WE,WZ, WF, GF Bearing WE, WF, G2F	FTP 511/M8 FTP 511/M8	FTG 103 FTG 104
VTR 401	Bearing WZ, WF, G2F	FTP 511/M8	FTG 104
VTR 500	Bearing WE, WZ, WF, GF, GF1 Bearing WZ, WZ6, WF, G2F	FTP 511/M8 FTP 511/M8	FTG 103 FTG 104
VTR 501	Bearing WZ, WZ5, WZ6, WF, G2F	FTP 511/M8	FTG 104
VTR 630	Bearing WE, WZ, WF, GF, GF1 Bearing WF, G2F	FTP 511/M12 FTP 511/M12	FTG 103 FTG 104
VTR 631	Bearing WE,WZ, WZ5, WF, GF1 Bearing WF, G2F	FTP 511/M12 FTP 511/M12	FTG 103 FTG 104
VTR 750	Bearing WE,WZ, WF, GF Bearing WZ5, WZ6, WF, G2F	FTP 511/M12 FTP 511/M12	FTG 103 FTG 104
VTR 751	Bearing WZ Bearing WZ5, WZ6, WF, G2F	FTP 511/M12 FTP 511/M12	FTG 103 FTG 104
VTR 900	Bearing GF	FTP 511/B10	FTG 104
VTR 184, 214, 254, 304, 354	_	_	FTG 233 A or S
VTR 304, 354	PE2, LS2	FTP 511/M8	FTG 104
VTR 454, 564	_	FTP 511/M8	FTG 104
VTR 714	_	FTP 511/M12	FTG 104

FTP

Page	Page
D	DSD 1010.00 PTV Ex18
Description of measuring principles	DSD 1205.22 AHV32
Differential ferrostat sensors with line	DSD 1205.22 ATV
amplifier	DSD 1205.22 MTV32
Electromagnetic sensors	DSD 1205.22 SHV32
Ferrostat sensors with line amplifier7	DSD 1205.22 STV
HF Sensors (Inductive sensors)9	
Photo-electric reflective sensor9	DSD 1210.01 AHV
Rotary encoders9	DSD 1210.01 ATV20
Differential Ferrostat Sensor17	DSD 1210.01 MTV20
Connection43	DSD 1210.01 SHV20
DSD 1005 K, P31	DSD 1210.01 STV20
DSD 1010 K, P19	DSD 1405.22 AHV34
DSD 1205 A, S, M 33	DSD 1405.22 ATV
DSD 1210 A, S, M21	DSD 1405.22 MTV
DSD 1405 A, S, M35	DSD 1405.22 SHV
DSD 1410 A, S, M23	
DSD 1605 A, S, M37	DSD 1405.22 STV
DSD 1610 A, S, M	DSD 1410.01 AHV22
DSD 1805 A, S, M	DSD 1410.01 ATV22
DSD 1810 A, S, MW45	DSD 1410.01 MTV22
DSD 1820 S, MW47	DSD 1410.01 SHV22
DSD 2205 A, S, M41	DSD 1410.01 STV22
DSD 2210 A, S, M29	DSD 1605.22 AHV
DSD 2210 A, S, MW49	DSD 1605.22 ATV
DSD 2220 SW51	DSD 1605.22 MTV
Function 17, 43	
Installation17, 43	DSD 1605.22 SHV36
Differential ferrostat sensors	DSD 1605.22 STV
with line amplifier	DSD 1610.01 AHV24
DSD7	DSD 1610.01 ATV24
DSD 1005.00 KTV 30	DSD 1610.01 MTV24
DSD 1005.00 KTV Ex30	DSD 1610.01 SHV24
DSD 1005.00 PTV30	DSD 1610.01 STV24
DSD 1005.00 PTV Ex30	DSD 1805.22 AHV
DSD 1010.00 KTV 18	DSD 1805.22 ATV
DSD 1010.00 KTV Ex18	DSD 1805.22 MTV
DSD 1010.00 PTV 18	DSD 1805.22 SHV38

Page	Page Page
DSD 1805.22 STV38	DSE 1210.00 ATZ86
DSD 1810.01 AHV26	DSE 1210.00 MTZ86
DSD 1810.01 ATV26	DSE 1210.00 SHZ86
DSD 1810.01 MTV26	DSE 1210.00 STZ86
DSD 1810.01 SHV26	DSE 1210.01 AHZ84
DSD 1810.01 STV26	DSE 1210.01 SHZ84
DSD 1810.11 AHW44	DSE 1210.02 AHZ84
DSD 1810.11 ATW44	DSE 1210.02 SHZ84
DSD 1810.11 MTW44	DSE 1210.04 AHV 114
DSD 1810.11 SHW44	DSE 1210.05 AHV 114
DSD 1810.11 STW44	DSE 1410.00 AHZ88
DSD 1820.11 MHW46	DSE 1410.00 ATZ88
DSD 1820.11 SHW46	DSE 1410.00 MTZ88
DSD 2205.22 AHV 40	DSE 1410.00 SHZ 88
DSD 2205.22 ATV40	DSE 1410.00 STZ88
DSD 2205.22 MTV40	DSE 1610.00 AHZ90
DSD 2205.22 SHV40	DSE 1610.00 ATZ90
DSD 2205.22 STV40	DSE 1610.00 MTZ90
DSD 2210.01 AHV28	DSE 1610.00 SHZ90
DSD 2210.01 ATV28	DSE 1610.00 STZ90
DSD 2210.01 MTV28	DSE 1610.01 AHZ90
DSD 2210.01 SHV28	DSE 1610.01 SHZ90
DSD 2210.01 STV28	DSE 1810.00 AHZ102
DSD 2210.11 AHW48	DSE 1810.00 ATZ102
DSD 2210.11 ATW48	DSE 1810.00 MTZ102
DSD 2210.11 MTW48	DSE 1810.00 SHZ102
DSD 2210.11 SHW 48	DSE 1810.00 STZ102
DSD 2210.11 STW48	DSE 1810.01 AHZ100
DSD 2220.00 SHW50	DSE 1810.01 SHZ100
DSE 0603.00 SHZ78	DSE 1810.09 ATZ96
DSE 1010 SHV 112	DSE 1810.09 MTZ96
DSE 1010 STV 112	DSE 1810.09 STZ96
DSE 1010.00 STZ80	DSE 1810.10 ATZ Ex96
DSE 1010.00 ZTZ80	DSE 1810.10 MTZ Ex96
DSE 1210.00 AHZ86	DSE 1810.10 STZ Ex96

Page		Page
DSE 1810.11 ATZ96	DSF 1210.00 AHV EX	62
DSE 1810.11 STZ96	DSF 1210.00 ATV	62
DSE 1820.10 ATZ Ex98	DSF 1210.00 MTV	62
DSE 1820.10 MTZ Ex98	DSF 1210.00 SHV	62
DSE 1820.10 STZ Ex98	DSF 1210.00 SHV Ex	62
DSE 1820.11 AHZ98	DSF 1210.00 STV	62
DSE 1820.11 SHZ98	DSF 1210.00 STV Ex	62
DSE 2210 ATZ 104	DSF 1410.00 AHV	64
DSE 2210 MTZ104	DSF 1410.00 ATV	64
DSE 2210.10 ATZ Ex104	DSF 1410.00 MTV	64
DSE 2210.10 MTZ Ex104	DSF 1410.00 SHV	64
DSE 2210.10 STZ Ex104	DSF 1410.00 STV	64
DSE 2220 ATZ106	DSF 1610.00 AHV	66
DSE 2220 MTZ106	DSF 1610.00 ATV	66
DSE 2220.10 ATZ Ex106	DSF 1610.00 MTV	66
DSE 2220.10 MTZ Ex106	DSF 1610.00 SHV	66
DSE 2220.10 STZ Ex106	DSF 1610.00 STV	66
DSE 25ME.00 AHZ108	DSF 1810.00 AHV	68
DSE 36MZ.00 AHZ 108	DSF 1810.00 AHV EX	68
DSE 36MZ.00 ATZ108	DSF 1810.00 ATV	68
DSE AAMZ.00 AHZ108	DSF 1810.00 MTV	68
DSE AD10.00 AHZ82	DSF 1810.00 SHV	68
DSE AD10.00 SHZ82	DSF 1810.00 SHV Ex	68
DSE EH10.00 AHZ92	DSF 1810.00 STV	68
DSE EH10.00 ATZ92	DSF 1810.00 STV Ex	68
DSE EH10.00 ATZ Ex92	DSF 1815.00 ATZ	54
DSE EH10.00 MTZ92	DSF 1815.00 ATZ Ex	54
DSE EH10.00 MTZ Ex92	DSF 1815.00 MTZ	54
DSE EH10.00 SHZ92	DSF 1815.00 MTZ Ex	54
DSE EH10.00 STZ92	DSF 1815.00 STZ	54
DSE EH10.00 STZ Ex92	DSF 2210.00 AHV	70
DSE EH10.05 AHZ94	DSF 2210.00 AHV Ex	70
DSEV 6	DSF 2210.00 ATV	70
DSEZ	DSF 2210.00 MTV	70
DSF 1210 00 AHV 62	DSF 2210 00 SHV	70

Index

Page	Pag
DSF 2210.00 SHV Ex70	Е
DSF 2210.00 STV70	Electromagnetic Sensor
DSF 2210.00 STV Ex70	with line amplifier Diagram and characteristics
DSF 2210.87 STV70	DSE 1010 S.V113
DSF 2210.87 STV Ex70	DSE 1210 AHV115
DSF 2215.00 ATZ56	General11
DSF 2215.00 ATZ Ex56	Electromagnetic Sensor
DSF 2215.00 MTZ56	without line amplifier
DSF 2215.00 MTZ Ex56	Diagrams and characteristics73, 75, 77, 79, 8
DSF 2215.00 STZ56	DSEMZ/ME A
DSF 2215.00 STZ Ex56	DSE 0603 S79
DSF EH15.00 ATZ58	DSE 1210 A, S 85
DSF EH15.00 ATZ Ex58	DSE 1210 A, S, M87
	DSE 1410 A, S, M
DSF EH15.00 MTZ58	DSE 1610 A, S, M
DSF EH15.00 MTZ Ex58	DSE 1810.01 A, S
DSF EH15.00 STZ58	DSE 1820 A, S, M
DSF EH15.00 STZ Ex58	DSE 2210 A, S, M105
DSFV	DSE 2220 A, S, M107
DSFZ6	DSE AD10 A, S83
DSH 0540 KTN118	DSE EH10 A
DSH 0540 KTN Ex 118	DSE EH10 A, S, M93
DSH 0540 KTV 126	General73
DSH 1280 KTN120	Electromagnetic sensors
DSH 1280 KTN Ex120	Explosion protection15
DSH 1280 KTV 128	F
DSH 1820.00 STZ	Ferrostat sensor
DSH 1840.00 SHZ	with amplifier Connection6
DSH 1840.00 STZ	DSF 1210 A, S, M
DSH 1840.01 SHV130	DSF 1410 A, S, M
	DSF 1610 A, S, M 67
DSHN	DSF 1810 A, S, M69
DSHV8	DSF 2210 A, S, M7
DSP088	Function6
DSR 9	Installation6
DSR 18200 KTV 134	

	Page
FTG 1087.00 S Ex	70
FTG 1088.00	30
FTG 1088.00 Ex	30
FTG 1088.01	30
FTG 1088.01 Ex	30
FTG 1089.00	18
FTG 1089.00 Ex	18
FTG 1089.01	18
FTG 1089.01 Ex	18
FTG 110 A	108
FTG 160 SH	78
FTG 211 A	96
FTG 211 S	96
FTG 211 SM	96
FTG 2110.00 A	92
FTG 2110.00 M	92
FTG 2110.00 S	92
FTG 212 A	98
FTG 212 S	98
FTG 212 SM	98
FTG 221 AH	96
FTG 221 SH	96
FTG 2210.00 A	92
FTG 2210.00 S	92
FTG 222 AH	98
FTG 222 SH	98
FTG 231 A	82
FTG 231 S	82
FTG 232 A	84
FTG 232 S	84
FTG 233 A	84
FTG 233 S	84
FTG 233.01 A	114
FTG 233.02 A	114
FTG 242 K(S)	80
	FTG 1087.00 S Ex

Page		Page
FTG 242 M(Z)80	Н	
FTG 262 S 112	HF Sensor (inductive)	
FTG 262 SH 112	with amplifier Connection	125
FTG 285.01 A54	DSH 0540 KTV	
FTG 285.01 A Ex54	DSH 1280 KTV	
FTG 285.01 S54	DSH 1840 SHV	
FTG 285.01 S Ex54	Function	125
FTG 285.01 SM54	Installation	125
FTG 285.01 SM Ex54	HF Sensor (inductive) without amplifier	
	Connection	117
FTG 2850.00 A58	DSH 0540 KTN	
FTG 2850.00 A Ex58	DSH 1280 KTN	121
FTG 2850.00 S58	DSH 1820/1840 S.Z	123
FTG 2850.00 S Ex58	Function	
FTG 2850.00 SM58	Installation	117
FTG 2850.00 SM Ex58	HF Sensors (Inductive sensors)	8
FTG 291 A96	Р	
FTG 291 S96	Photo-electric reflective sensor	9
FTG 291 SM96	DSR 18200 K	135
FTG 292122	Pole bands	
FTG 294122	FTP 551	143
FTG 294S74122	FTP 551 series	
6	FTP 552	_
G	FTP 552 series FTP 553	
General installation advice	FTP 553	
Explosion protection15	Material	_
Installation15	Pole band to shaft	
Pole wheel geometry15	Sensing	143
Sensor Type Key DS13	Target geometry	143
Speed measurement 11	Pole wheel geometry	15
Test possibilities	Pole wheels	
The frequency method11	FTP 520 series	141
	FTP 530 series	
	FTP 540 series	
	General	
	Geometric relationships with disc wheels	
	Material	

Page Order details 141 Pole wheel sensing 139 Target geometry 139 R 8 Rotary encoders 8 S Sensor Type Key DS 13 Sensors and more 4 Speed measurement 11 T Test possibilities 15 The frequency method 11 Turbocharger pole wheels 145

Index

