

Via monte Nero, 40/B - 21049 TRADATE (VA) ITALY

Tel: +39 (0)331841070 Fax:+39 (0)331841950 - e-mail:datexel@datexel.it - www.datexel.it

CARATTERISTICHE

- Ingresso configurabile per Tc, RTD, Res, mV, V, mA, Potenziometro
- Uscita configurabile in Corrente da 0 a 20mA o Tensione da 0 a 10 V
- Configurabile da Personal Computer
- Isolamento galvanico a 2000 Vac tra ingresso e uscita
- EMC conforme Marchio CE
- Adatto al montaggio su binario DIN conforme a EN-50022

Convertitore di segnale con soglie d'allarme

DAT 4520

DESCRIZIONE GENERALE

Il dispositivo DAT 4520 oltre ad accettare segnali in mV, V, mA o resistenza, può essere interfacciato direttamente a sensori tipo Termocoppie, RTD o potenziometri.

Il segnale di ingresso viene filtrato, linearizzato, amplificato e trasferito al circuito di uscita, che provvede a convertirlo in un segnale in tensione nel range 0-10V oppure in corrente nel range 0-20 mA. Il morsetto di alimentazione ausiliaria permette di alimentare il convertitore o il loop di corrente collegati all'uscita. Il dispositivo inoltre può gestire due soglie di allarme con uscita a relays.

Il DAT 4520 è isolato a 3 vie: l'ingresso è isolato dall'alimentazione e dall'uscita; inoltre alimentazione e uscita sono isolate tra di loro.

La programmazione avviene tramite Personal Computer attraverso il programma di configurazione PROSOFT, sviluppato da DATEXEL ed operante su sistema operativo Windows™; è possibile configurare il convertitore in modo da poterlo interfacciare con i sensori più usati.

Il led verde "PWR" indica la corretta alimentazione del modulo; i led rossi "RL1" e "RL2" indicano lo stato degli allarmi di soglia.

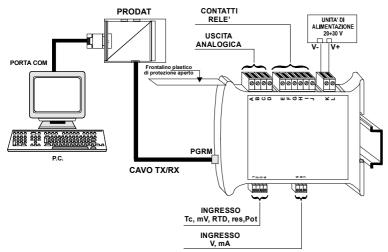
Il convertitore di segnale DAT 4520 è conforme alla direttiva 2004/108/CE sulla compatibilità elettromagnetica.

Esso è alloggiato in un robusto contenitore plastico di soli 22,5 mm di spessore che consente un montaggio ad alta densità su binario DIN conforme allo standard EN-50022.

SPECIFICHE TECNICHE (Tipiche a 25 °C e nelle condizioni nominali)

Tipo ingressi	Min	Max	Span min	Calibrazione ingressi		Soglie di allarme	
. •			-	RTD	il maggiore di ±0,1%fs e ±0,2°C	Tipo uscita	n° 2 Relé SPDT
Tc(*)				Res. Basso	il maggiore di $\pm 0,1\%$ fs e $\pm 0,15 \Omega$	Potenza contatti	2A , 250 Vac
J	-200°C	1200°C	2mV	Res. Alto	il maggiore di ±0,2%fs e ±1 Ω		2A , 30 Vdc
K	-200°C	1370°C	2mV	mV, Tc	il maggiore di ±0,1%fs e ±10 uV	Carico	resistivo
S	-50°C	1760°C	2mV	V	il maggiore di ±0,1%fs e ±2 mV	Carico minimo	5Vdc, 10mA
R	-50°C	1760°C	2mV	mA	il maggiore di ±0,1%fs e ±6 uA	Tensione max	250 Vac (50/60 Hz)
В	400°C	1820°C	2mV				110 Vdc
E	-200°C	1000°C	2mV	Calibrazione uscite		Isolamento	bobina/contatti: 2000Va
T	-200°C	400°C	2mV	Corrente	± 7 uA		tra i contatti: 1000Vac
N	-200°C	1300°C	2mV	Tensione	± 10 mV	Alimentazione	
						Tensione di alimen	itazione 20 30 Vdc
RTD(*)				Resistenza di carico uscita		Protezione invers.	
Pt100	-200°C	850°C	50°C	Corrente	< 650 Ω		polarita de vae max
Pt1000	-200°C	200°C	50°C	Tensione	> 4,7 KΩ	Isolamento	
Ni100	-60°C	180°C	50°C			Ingresso/Uscita	2000 Vac, 50 Hz, 1min.
Ni1000	-60°C	150°C	50°C	Impedenza di in		Ingresso/Aliment.	2000 Vac, 50 Hz, 1min.
				Tc, mV	>= 10 MΩ	Aliment./Uscita	1500 Vac, 50 Hz, 1min.
Tensione				V	>= 1 MΩ	Tamananatuma a Um	-1-1143
mV	-100mV	+700mV		mA	<= 50 Ω	Temperatura e Um	
V	0 V	10 V	500mV			Temperatura opera	
_				Linearità		Temp. di immagazz	- 33
Corrente				Tc	± 0,2 % fs	Umidità (senza con	iderisa) 090%
mA	0 mA	20 mA	2 mA	RTD	± 0,1 % fs	Contenitore	
				Influenza della R di linea		Materiale	Plastica auto-estinguente
Potenziometro				Tc, mV	<=0,8 uV/Ohm	Montaggio	su Barra DIN
(valore nominale)	0 Ω	200 Ω	10%	RTD 3-fili	$0.05\%/\Omega$ (50 Ω max bilanciati)	Peso	150 g. circa
	200 Ω	500 Ω	10%	RTD 4-fili	$0.005\%/\Omega$ (100 Ω max bilanciati)	Dimensioni (mm) :	
	0,5 ΚΩ	2 ΚΩ	10%	KID 4-IIII	0,003 /0/12 (100 12 ITIAX DIIAITCIALI)	Dimonoroni (min) :	120 X 100 X 22,0
				Deriva termica		EMC (per gli ambienti industriali)	
Resistenza				Fondo Scala	± 0,01%/°C		
Basso	0Ω	300Ω	10 Ω	CJC	± 0,01%/°C	Immunità	EN 61000-6-2
Alto	0 Ω	2000 Ω	200 Ω		,	Emissione	EN 61000-6-4
				Corrente di ecci			
				Tipico	0,350 mA		
Tipo uscite	Min	Max	Span min	Comp. CJC	± 0,5°C		
Tensione	0 V	10V	1 V	•	,		
Corrente	0 mA	20mA	4 mA	Tempo di rispos (10÷90%)	sta 0,4 sec. circa		

CONFIGURAZIONE e CALIBRAZIONE


Attenzione: durante queste fasi il dispositivo deve sempre essere alimentato.

- CONFIGURAZIONE

- 1) Aprire il frontalino plastico di protezione sul lato frontale.
- 2) Collegare l'interfaccia PRODAT al Personal Computer ed al dispositivo sul connettore PGRM, come illustrato nella figura.
- 3) Aprire il programma di configurazione PROSOFT.
- 4) Impostare i dati di programmazione *
- 5) Inviare i dati di programmazione al dispositivo *.

- CONTROLLO DELLA CALIBRAZIONE Con programma PROSOFT in esecuzione:

- 1) Collegare in ingresso un simulatore impostato con i valori di inizio e fondo scala relativi alla grandezza elettrica oppure al sensore di temperatura da misurare.
- 2) Portare il simulatore al valore di inizio scala.
- 3) Verificare che il dispositivo fornisca il valore minimo di uscita impostato.
- 4) Portare il simulatore al valore di fondo scala.
- 5) Verificare che il dispositivo fornisca il valore massimo di uscita impostato.
- 6) Nel caso in cui sia necessario regolare i valori descritti nei punti 3 e 5, agire sui regolatori ZERO e SPAN presenti nel programma PROSOFT *.
- La variazione da introdurre deve essere calcolata come percentuale del campo scala di inaresso
- 7) Programmare il dispositivo con i nuovi parametri di regolazione inseriti *.
- * = fare riferimento al manuale operativo di Prosoft.

ISTRUZIONI PER L'INSTALLAZIONE

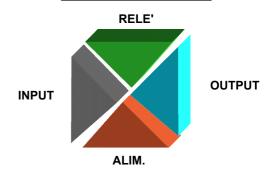
Il dispositivo DAT 4520 è adatto al montaggio su binario DIN in posizione verticale. Per un funzionamento affidabile e duraturo del dispositivo seguire le seguenti indicazioni.

Nel caso in cui i dispositivi vengano montati uno a fianco all' altro distanziarli di almeno 5 mm nei seguenti casi:

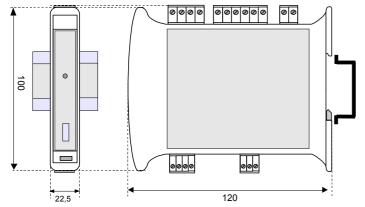
- Temperatura del quadro maggiore di 45 °C e almeno una delle condizioni di sovraccarico si sia verificata
- Temperatura del quadro maggiore di 35 °C ed entrambe le condizioni di sovraccarico si siano verificate. Condizioni di sovraccarico:
- Tensione di alimentazione elevata: > 27 Vcc
- Utilizzo della tensione ausiliaria (morsetto D)

Evitare che le apposite feritoie di ventilazione siano occluse da canaline o altri oggetti vicino ad esse. Evitare il montaggio dei dispositivi al di sopra di apparecchiature generanti calore; si raccomanda di montare il dispositivo nella parte bassa dell' installazione, quadro o armadio che sia. Installare il dispositivo in un luogo non sottoposto a vibrazioni.

Si raccomanda inoltre di non far passare il cablaggio in prossimità di cavi per segnali di potenza e che il collegamento sia effettuato mediante l' impiego di cavi schermati.


INGRESSI Тс m۷ 6 RTD 2w RTD 3w RTD 4w Pot 3) 2 3 3 4 4 **USCITE USCITA CORRENTE PASSIVA USCITA CORRENTE ATTIVA** O Rload **USCITA TENSIONE** ALIMENTAZIONE **(B)** 20÷30 Rload Vdc CONTATTI RELE' COM COM G N.C N.C

COLLEGAMENTI


STRUTTURA ISOLAMENTI

N.O.

N.O.

DIMENSIONI MECCANICHE (mm.)

COME ORDINARE

Il dispositivo viene fornito nella configurazione richiesta dal cliente in fase di ordine. Nel caso in cui la configurazione del dispositivo non sia specificata, i parametri di funzionamento saranno da impostare a cura dell' utilizzatore.

Fare riferimento alla sezione "Specifiche Tecniche" per i campi scala di ingresso ed uscita

CODICE D' ORDINE:

DAT 4520 - Input – Output - Opzioni (opzionale) = Richiesto = Opzionale