
 Via monte Nero, 40/B – 21049 TRADATE (VA) ITALY
 Phone: +39 (0)331841070 Fax:+39 (0)331841950 - e-mail:datexel@datexel.it - www.datexel.it

Pag. 1

Dev9K
User Guide

v. 1.0

Integrated Development Environment to design and debug the applications based on the DAT9000 series controllers.

1. Introduction

1.1 – General Description
1.2 – Minimum system requirements
1.3 – Procedure of installation
1.4 – Dev9K window
1.5 - Terminology

2. Getting started

2.1 – Start a new Project
 2.2 – Save and Load a Project

2.3 - Insert, Modify and Remove a Function Block
2.4 – Compile and Error Check

3. Internal Registers

3.1 – Internal Registers
3.2 – Type of Data Format
3.3 – Mapping Registers
3.4 – System Registers overview

4. Functions description

4.1 – Function list
4.2 – Functions description

5.Insertion of Tables

5.1 – Insertion of Tables

6. Controller operations

6.1 – Searching of the devices connected
6.2 – Connecting to the Controller
6.3 - Download the Program
6.4 – Debug Mode
6.5 – Release Mode
6.6 – INIT Mode
6.7 - Web Server

7. Tips and suggestions

7.1 – Ethernet connection

8. Error messages

8.1 – Error messages in the log window and in the status bar
8.2 – Error messages inside the popup windows

9.Troubleshooting

9.1 – Possible causes of fault

SUMMARY

mailto:datexel@datexel.it
http://www.datexel.it/

Dev9K

Pag. 2<< INDEX

1.1 – GENERAL DESCRIPTION

Dev9K is an Integrated Development Environment running under the Windows® Operative System that allows to design and
debug the applications based on the DAT9000 series control devices. With Dev9K it is possible to set the DAT9000 series
controllers to execute I/O read and write operations (DAT3000 series), mathematical and logic operations and timers. Moreover it
is possible to read and write in real time the Internal Registers of the Controller or connect it directly to the slave devices
connected to its Modbus Master Port.

● Close eventual active or background applications.
● Insert the CD-ROM of installation in the driver.
● Wait for the Autorun window opening.
 If the Autorun function is disabled, open the CD-ROM and execute the installation file at the path:
 <CD Driver>:/doc/download.html
● Click on the Tools button.
● Click on the “download” button in the DAT9000 section.
● Follow the Installation Wizard.

Operative System Windows® 2000 / NT / ME / XP/ Vista
Available Hard Disk memory 2 MB

In the Main Window of Dev9K the following components are shown:
● The Menu bar, the Tool bar and the Status bar (Fig.1.1-A)
● The Project tree (Fig.1.1-B)
● The Log window (Fig.1.1-C)
● The Main Program window (Fig.1.1-D)
● The Registers Table (Fig.1.1-E)

D

E

B

Fig. 1.1

A

C

1. Introduction

1.2 – MINIMUM SYSTEM REQUIREMENTS

1.3 – PROCEDURE OF INSTALLATION

1.4 – DEV9K WINDOW

Dev9K

Pag. 3<< INDEX

Description of terms and abbreviations used in Dev9K and in this manual.

Controller Device of the DAT9000 series.

Integrated Development
Environment Instructions set to create, to debug and to test the Program.
IDE

Program List of functions executed from the Controller.

Function Block Each block constituting the Main Program. Each Function Block can contain a function.
F.B.

Function Logical, mathematical or flow operation executed from the Controller.

Variable Each parameter contained in a function.

Register Position of a variable in the volatile memory of Controller.

Retentive Register Position of a variable in the non-volatile memory of Controller.

Label String of characters used to identify the name of an object (Function Block, Register, Table,...)

1. Introduction

1.5 - TERMINOLOGY

Dev9K

Pag. 4<< INDEX

Click on the “New Project” button (Fig.2.1-A) or select “ Project -> New ” in
the Menu bar.
The following windows will appear:
●“Project”: contains the list of the design properties (Fig.1.1-B).
●“Main Program”: in this window it is possible to insert the Function Blocks
 to generate the Program. For a new Project this window contains a blank
 Function Block. (Fig.1.1-D).
●“Registers Table”:contains the list of Controller's Registers (Fig.1.1-E).

To set a Function Block it is necessary to activate it, clicking inside the
block: the block is active when its border is highlighted in red .
It is possible to insert a new Function Block before or after the highlighted
block (Fig.2.3-A).
Click on the “Insert Before” button (Fig.2.2-A) to insert a new block between
the highlighted block and the previous .
Click on the “Insert After” button (Fig.2.2-B) to insert a new block between
the highlighted block and the successive.
The new block inserted will be automatically highlighted.
To remove a Function Block, click on the block to select it and then click on
the “Delete” button (Fig.2.2-D).
To modify a Function Block, click two times on the block or click on the
block to select it and then click on the “Modify” button (Fig.2.2-C).

The operations described above are also accessible from the menu that
appears clicking the right button of the mouse inside the highlighted
Function block.

The “Zoom” button (Fig.2.3-B) allows to change the scale of visualization of
the Main Program window reducing the dimensions of the Function Blocks
(Zoom -) or turn back to the standard visualization (Zoom +).

B C DA
Fig. 2.2

Fig. 2.3

A

B

2.1 – START A NEW PROJECT

To save the Project click on the “Save Project” button (Fig.2.1-C) or select
“ Project -> Save ” or “ Project -> Save As... ” in the Menu bar.
When a Project is saved for the first time, Dev9K requires the file name that
will be used as name for the Project.
The following files will be generated:
● filename.prj – Contains the information about the Project and the
Program.
● filename.prj.lst – Contains the information about the Register Table.
● filename.prj.tbl – Contains the information about the Linearization Tables.
To load a Project previously saved click on the “Open Project” button
(Fig.2.1-B) or select “ Project -> Open ” in the Menu bar. It will be loaded the
Program, the existing Tables, the name and the types of the Registers .

A

Fig. 2.1

B C

2. Getting started

2.2 – SAVE AND LOAD A PROJECT

2.3 – INSERT, MODIFY AND REMOVE A FUNCTION BLOCK

Dev9K

Pag. 5<< INDEX

When the user modifies a Function Block, the “Function Block” window
(Fig.2.4) will be visualized; this allows to set the variables relative to the
Function selected.
The Functions are gathered in specific functional groups: to visualize them,
click on the button relative to a functional group (Fig.2.4-A) in order to
visualize its specific functions (Fig.2.4-B).
Clicking on the button relative to the function to be inserted; it will appear a
menu where it is possible to set the Label and the Variables (Fig.2.4-C)
proper of the selected function.
To define particular variables like Masks or Tables, it is possible to use the
“Set” button to open a window of guided insertion of the value.

At the end, click on the “OK” button (Fig.2.4-D) to insert the function inside
the Main Program window.

In the Main Program window, the following parameters will be visualized:

● Index (Fig.2.5-A): unique number that identifies the position of the block
inside the Program.
● Label (Fig.2.5-B): unique label that identifies the Function Block inside the
Program (used for the functions of the “Flow” functional group, refer to
section “Function description”).
● Symbol (Fig.2.5-C): icon relative to the function to be inserted.
● Variable (Fig.2.5-D): parameter of the Function Block.

Refer to the section “Function description” to know how to insert the
functions.

Fig. 2.4

A

B

C

D

Fig. 2.5

A
B C

D

When the insertion of the Function Blocks is complete, it is possible to
compile the Program clicking on the “Compile ” button (Fig.2.6).
It will be created a report in the Log window (Fig.2.7) containing the eventual
errors and/or anomalies encountered during the error checking
procedure(Fig.2.7-A).
If the compiling process has a successful conclusion, the Log window will
show the memory resources in use by the Program (Fig.2.7-B).

Fig. 2.7

A

B

Fig. 2.6

2.4 – COMPILE AND ERROR CHECK

2. Getting started

Dev9K

Pag. 6<< INDEX

Click on the “Watch” button (Fig.3.1) to visualize the Registers Table (Fig.3.2).
To update the Register's value, click on the “Read” button (Fig.3.2-A).
For each Register it is visualized:
● The Register address (Fig.3.2-B)
● The Register name (Fig.3.2-C)
● The value contained into the Register (Fig.3.2-D)
● The Register data format (Fig.3.2-E)

To modify the name or the value of a Register, click two times on the row of
table regarding the Register.
Inside the “Set” window (Fig.3.3) it is possible to set the name (Label) of the
Register (only for the General Purpose Register), to force the value
contained in the Register (only if the Controller is connected) and to set the
type of data format of the Register.

Fig. 3.1

Fig. 3.2

AB C D E

Each General Purpose Register can be read or written using one of the
following data format :

● Uint 16 bit Unsigned Integer (0 ÷ 65535)
● Int 16 bit Signed Integer (-32768 ÷ +32767)
● Ulong 32 bit Unsigned Long (0 ÷ 4,294,967,295)
● Long 32 bit Signed Long (-2,147,483,648 ÷ +2,147,483,647)
● Float 32 bit Floating Point
● Hex 16 bit Unsigned Integer visualized as Hexadecimal

characters (0000 ÷ FFFF)
● ASCII 16 bit Unsigned Integer visualized as ASCII characters
● Bin 16 bit Unsigned Integer visualized as binary code

● K_Flt Floating Point Kostant (as decimal)
● K_Long Long Kostant (as binary code)

NOTE: the 32 bit Registers request the position of 2 Registers.

3. Internal Registers

3.1 – INTERNAL REGISTERS

3.2 – TYPE OF DATA FORMAT

System Registers: contain the information about the status
Controller.

General Purpose Registers: can be used in the Program to
move the data or to execute calculation functions.

Retentive General Purpose Registers: can be used from the
Program to move the data or to execute calculation functions.
These Registers are saved in Eprom each time their values
change and they are uploaded when the Controller is powered-
on.

The Internal Memory of the Controller is composed of a 16 bit Register
series divided as follows:

%S

%R

%M

Fig. 3.3

Dev9K

Pag. 7<< INDEX

3.3 – MAPPING Register

Register
%S0
%S1
%S2
%S3
%S4
%S5
%S6
%S7
%S8
%S9
%S10
%S11
%S12
%S13
%S14
%S15
%S16
%S17
%S18
%S19
%S20
%S21
%R22
%R23
%R24
%R25
%R26

%R959
%R960

%R1023

Description
--Reserved--
Firmware [0]
Firmware [1]
Name [0]
Name [1]
Port 1 [BaudRate]
Node ID
Port 1 [Timeout RX]
Digital Inputs
Digital Outputs
System Flags
--Reserved--
--Reserved--
PC
Status [0]
Status [1]
COM Errors
Gateway Mask [L-H]
Port 0 [Settings]
Port 0 [Settings]
Timers Enable
--Reserved--
RTC [0]
RTC [1]
RTC [2]
RTC [3]
General
Purpose
Registers

Retentive
Registers

Access
R/W

R
R

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

-
-
R
R
R

R/W
R/W
R/W
R/W
R/W

-
R/W
R/W
R/W
R/W
R/W

R/W

MODEL DAT9000-DL-IO – Ver.FW 9000

BaudRate
1200
2400
4800
9600
19200
38400
57600
115200

Value
0
1
2
3
4
5
6
7

3.4 – SYSTEM REGISTERS OVERVIEW

This paragraph describes the working of the System Registers. Refer to the Registers Mapping relative to the device in use to
find out the position and the type of access to the Register.

FIRMWARE

Field of 2 read only Registers: contains the identifier firmware code provided from the manufacturer.

NAME

Field of 2 read/write Registers (4 bytes or 4 ASCII characters) at the user disposal: it can contain the name of Controller or a
unique code that identifies its function in the plant. Each one of the byte can contain any value from 0 up to 255, the ASCII
characters are included.
The default value of this field contains the identifier of the device in ASCII characters.

PORT 1 Baud Rate

Field of 1 read/write Register used to select the baud rate of the PORT 1 Modbus Master serial port. Set the value in function
of the following table:

3. Internal Registers

Dev9K

Pag. 8<< INDEX

Bit

Coil

15

-

14

-

13

-

12

-

11

WE

10

PU

09

-

08

-

07

-

06

-

05

-

04

-

03

-

02

-

01

-

00

-

PowerUp Event
Normal Mode

Reset Occurred

P
0
1

Bit

Descr.

Channel

15

-

14

-

13

-

12

-

11

#3

10

#2

09

#1

08

#0

07

-

06

-

05

-

04

-

03

-

02

-

01

-

00

-

Input

DIGITAL INPUTS

Field of 1 read/write Register: contains the status of the Digital Inputs (0 = OFF , 1 = ON).

Bit

Descr.

Channel

15

-

14

-

13

-

12

-

11

-

10

-

09

#1

08

#0

07

-

06

-

05

-

04

-

03

-

02

-

01

-

00

-

Output

DIGITAL OUTPUTS

Field of 1 read/write Register: contains the status of the Digital Outputs and allows to drive directly the Output relays (0 =
OFF , 1 = ON) .

NODE ID

Field of 1 read/write Register: contains the Modbus node address of the device; the addresses allowed are from 1 up to 247.
Each device connected to the same net must have an unique address.

PORT 1 Timeout RX

Field of 1 read/write Register: contains the value of the delay time successive to the reception of the response on the PORT1
Modbus Master; the value is expressed as milliseconds.

SYSTEM FLAGS

Field of 1 read/write Register: contains the following system flags:
- PowerUp Event : this bit is forced to 1 at each Controller power-on. It is possible to set the value as 0 to monitor eventual
Controller reset events .

PC (Program Counter)

Field of 1 read only Register: shows the position of the instruction (Function Block) executed in the Main Program . The value
0 is the first instruction (Function Block 1).

STATUS

Field of 2 read only Registers reserved for diagnostic operations.

COM ERRORS

Field of 1 read\write Register: is a counter of communication errors on the PORT1 Modbus Master. The value of this Register
is incremented each time that a query is sent on the Master Port and there is not response. This value can be resetted.

3. Internal Registers

Watchdog Enable
Watchdog disabilitato

Watchdog abilitato

WE
0
1

Dev9K

Pag. 9<< INDEX

Bit

Descr.

Channel

15

T7

14

T6

13

T5

12

T4

11

T3

10

T2

09

T1

08

T0

07

T15

06

T14

05

T13

04

T12

03

T11

02

T10

01

T9

00

T8

Timers

Bit

RTC[0]

RTC[1]

RTC[2]

RTC[3]

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Seconds [0÷59]

Minutes [0÷59] Hours [0÷23]

Day of week [1÷7] Date [1÷31]

Month [1÷12] Year [0÷99]

Bit

Descr.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

First address of the Mask Last address of the Mask

Bit

Descr.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Baud Rate Delay (0÷255)

BaudRate
1200
2400
4800
9600
19200
38400
57600
115200

Value
0
1
2
3
4
5
6
7

GATEWAY MASK

Field of 1 read/write Register: contains the range of Modbus addresses which the Controller can send to queries on the
PORT1 Master Port. If is requested to the Controller to send queries to an address out of this range, the command won't be
executed.

PORT 0 Settings

Field of 2 read/write Registers: contain the parameters “Baud-rate” and “delay time” (expressed as milliseconds) of the serial
PORT0 Slave Port. Set the value of the first Register in function of the following table:

TIMERS Enable

Field of 1 read/write Register. Each bit of this Register is associated to an internal Timer. The Timer starts to count when the
associated bit is set as 0; when the parameter “ time” of the Timer Function Block set for the Timer has passed, the Timer
stops to count and the associated bit is automatically forced to 1.

RTC (Real Time Clock/Calendar)

Field of 4 read/write Registers: contain the value of the internal clock.

The following information are available:

Seconds 00 ÷ 59
Minutes 00 ÷ 59
Hours 00 ÷ 23
Day of week 01 ÷ 07 (01=Sunday, 02=Monday, 07=Saturday)
Date 01 ÷ 31 (it depends on the month)
Month 01 ÷ 12 (01=January, 02=February, 12=December)
Year 00 ÷ 99 (00=2000, 99=2099)

NOTE: all of the values are expressed as hexadecimal characters .
NOTICE! Writing these Registers will imply the variation of the clock and calendar settings.

3. Internal Registers

Dev9K

Pag. 10<< INDEX

Functions selection tree, divided per functional group

4.1 – FUNCTION LIST

COMM “Communication” functions

Read
Holding

Modbus function “Read Holding Registers” (4xxxx , command 0x03)

Read
Input

Modbus function “Read Input Registers” (3xxxx , command 0x04)

Write Modbus function “Write Holding Registers” (4xxxx , command 0x16)

Read
DAT 3000

Read values from the DAT 3000 series

Write
DAT 3000

Write values to the DAT 3000 series

MOVE “Move” functions

Move Moves the value of an Internal Register or kostant in a new Register without to change the original
value.

Bitwise “Logical operations” functions

AND (bit) AND between two bits.
OR (bit) OR between two bits.

XOR (bit) XOR between two bits.
AND (word) AND between two words (Registers).
OR (word) OR between two words (Registers).

NOT Inversion of one or more bits.

Bit Set Forces to 1 one or more bits.

Bit Reset Forces to 0 one or more bits.

SHIFT “Logical operations” functions

Shift R “Shift to Right” a word (Register) .

Shift L “Shift to Left” a word (Register).

Rotate R “Rotate to Right” a word (Register).

Rotate L “Rotate to Left” a word (Register).

MATH “Math” functions

Add Add two values.
Sub Subtract two values.

Mult Multiply two values.
Div Divide two values.

Scale Proportional scale adaption.
SQRT Square Root Extraction.

Average Calculation of the Arithmetic Mean of two or more values.
Linearization Linearization function of a Register's value following a linearization table.

ABS Calculation of the absolute value.
e^(x) Exponential function.
x^y Raise X to the Y power.

XOR (word) XOR between two words (Registers).

4. Functions description

Dev9K

Pag. 11<< INDEX

COMP “Comparison” function

Trip Threshold.

FLOW “Flow” functions

GOTO Unconditioned jump to a Function Block
If (bit) goto Conditioned jump to a Function Block

Call Recall a Subroutine and jump to it
Return Return back from a Subroutine

Timers “Timing” function

Timer Activation of an Internal Timer

4. Functions description

Dev9K

Pag. 12<< INDEX

Read Holding Read the Holding Registers from a Modbus slave device

Reads the values of N holding Registers (Modbus function 0x03, Registers 4xxxx) from a Modbus slave
device and writes the values in the selected Internal Registers. In case of missing response or wrong
response by the slave device, the Registers of destination are not updated and the value of the System
Register “COM Errors” is increased.

Variables:

Address Modbus address of the slave device (1÷247)
Register Address of the first Register to read (the mapping Registers starts from 0)
Num Numbers of Registers to read (1÷16)
Dest Address of the first Internal Register wherein the read values are written to.
Delay Delay time between the reception of the response and the execution of the next instruction

Write Write the Holding Registers of a Modbus slave device

Writes the values of N Internal Registers in N Holding Registers of a Modbus slave device (Modbus function
0x16, Registers 4xxxx). In case of missing response or wrong response by the slave device, the Registers of
destination are not updated and the value of the System Register “COM Errors” is increased.

Variables:

Address Modbus address of the slave device (1÷247)
Register Address of the first Register to write (the mapping Registers starts from 0)
Num Numbers of Registers to write (1÷16)
Source Address of the first Internal Register from which the values to write are withdraw from.
Delay Delay time between the reception of the response and the execution of the next instruction.

Read3000 Read the I/O Registers from a Modbus slave DAT3000 series device

Reads the I/O values from a Modbus slave DAT3000 series device and writes the values in the Internal
Registers. The function will generate the proper Modbus command and will process the response.
In case of missing response or wrong response by the slave device, the Registers of destination are not
updated and the value of the System Register “COM Errors” is increased.
Refer to the technical documentation of the DAT3000 series device for the complete description of the I/O
Registers.

Variables:

Device Selection of the DAT3000 series slave device.
Address Modbus address of the slave device (1÷247).
Resource Type of data to read (analog inputs, digital inputs , etc...)
From First Resource to read.
To Last Resource to read.
Dest Address of the first Internal Register wherein the read values are written to.
Delay Delay time between the reception of the response and the execution of the next instruction.

4.2 – FUNCTIONS DESCRIPTION

4. Functions description

Read Input Read the Input Registers from a Modbus slave device

Reads the values of N input Registers (Modbus function 0x04, Registers 3xxxx) from a Modbus slave device
and writes the values in the Internal Registers. In case of missing response or wrong response by the slave
device, the Registers of destination are not updated and the value of the System Register “COM Errors” is
increased.

Variables:

Address Modbus address of the slave device (1÷247)
Register Address of the first Register to read (the mapping Registers starts from 0)
Num Numbers of Registers to read (1÷16)
Dest Address of the first Internal Register wherein the read values are written to.
Delay Delay time between the reception of the response and the execution of the next instruction.

Dev9K

Pag. 13<< INDEX

Move Move the value of an Internal Register or kostant in a new Register without to change the original value.

Writes in an Internal Register the value of a Kostant (preset) or the value of another Register (copy). The
value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same (modify the format of the Register).

Variables:

Source Kostant or Internal Register from which the value is read.
Dest Internal Register wherein the value is written.

And (word) Executes the logical operation “AND” between two values.

Executes the logical operation “AND” between a Register and a kostant (mask) or between two Registers. The
value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same (modify the format of the Register).
After the execution of the logical operation, only the bits set as 1 in the mask will be forced; the bits set as 0
won't be modified. In case of a 32 bit source Register or kostant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to force one or more bits of
a Register as 0 (in the mask set as 0 the bits to force, set as 1 the other bits).

Variables:

Source A Kostant or Internal Register relative to the first operator.
Source B Kostant or Internal Register relative to the second operator.
Mask Out Mask applied to the result.
Dest Internal Register wherein the result is written.

Or (word) Executes the logical operation ”OR” between two values.

Executes the logical operation “OR” between a Register and a kostant (mask) or between two Registers. The
value will be converted to the format selected for the destination Register. The address of the source Register
and the address of the Register of destination can be the same (modify the format of the Register). After the
execution of the logical operation only the bits set as 1 in the mask will be forced; the bits set as 0 won't be
modified. In case of a 32 bit source Register or kostant (long) and a 16 bit Register of destination (integer), the
most significant bits will be ignored. It is possible to use this function to force one or more bits of a Register as
1 (in the mask set as 1 the bits to force, set as 0 the other bits).

Variables:

Source A Kostant or Internal Register relative to the first operator.
Source B Kostant or Internal Register relative to the second operator.
Mask Mask applied to the result.
Dest Internal Register wherein the result is written.

Write3000 Write the I/O Registers of a Modbus slave DAT3000 series device

Writes the values of N Internal Registers in the I/O Register of a Modbus slave DAT3000 series device. The
function will generate the proper Modbus command and will process the response. In case of missing
response or wrong response by the slave device, the Registers of destination are not updated and the value of
the System Register “COM Errors” is increased.
Refer to the technical documentation of the DAT3000 series device for the complete description of the I/O
Registers.

Variables:

Device Selection of the DAT3000 series device.
Address Modbus address of the slave device (1÷247)
Resource Type of data to write (analog outputs, digital outputs, etc...)
From First Resource to write.
To Last Resource to write.
Source Address of the first Internal Register from which the values to write are withdraw from.
Delay Delay time between the reception of the response and the execution of the next instruction.

4. Functions description

Dev9K

Pag. 14<< INDEX

And (bit) Executes the logical operation “AND” between two bits.

Executes the logical operation “AND” (bit to bit) between a Register and a kostant (mask) or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same (modify the format of the
Register). After the execution of the logical operation only the bits set as 1 in the mask will be forced ; the bits
set as 0 won't be modified. In case of a 32 bit source Register or kostant (long) and a 16 bit Register of
destination (integer), the most significant bits will be ignored.

Variables:

Source A Kostant or Internal Register relative to the first operator.
Mask A Bits of the first operator
Source B Kostant or Internal Register relative to the second operator.
Mask A Bits of the second operator
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination.

Or (bit) Executes the logical operation “OR” between two bits.

Executes the logical operation “OR” (bit to bit) between a Register and a kostant (mask) or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same (modify the format of the
Register). After the execution of the logical operation only the bits set as 1 in the mask will be forced; the bits
set as 0 won't be modified. In case of a 32 bit source Register or kostant (long) and a 16 bit Register of
destination (integer), the most significant bits will be ignored.

Variables:

Source A Kostant or Internal Register relative to the first operator.
Mask A Bits of the first operator
Source B Kostant or Internal Register relative to the second operator.
Mask A Bits of the second operator
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination.

Xor (word) Executes the logical operation “XOR” (Exclusive Or) between two values.

Executes the logical operation “XOR” between a Register and a kostant (mask) or between two Registers. The
value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same (modify the format of the Register).
After the execution of the logical operation only the bits set as 1 in the mask will be forced ; the bits set as 0
won't be modified. In case of a 32 bit source Register or kostant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to invert (NOT) one or more
bits of a Register (in the mask set as 1 the bits to invert, set as 0 the other bits).

Variables:

Source A Kostant or Internal Register relative to the first operator.
Source B Kostant or Internal Register relative to the second operator.
Mask Out Mask applied to the result.
Dest Internal Register wherein the result is written.

4. Functions description

Dev9K

Pag. 15<< INDEX

Shift R Shift to right the bits of a Register .

Executes the shift of a Register to right: all of the bits are shifted of N positions to right. The most significant
bits will be forced to 0.

Variables:

Source Internal Register containing the value.
N Number of shift to execute.
Dest Internal Register wherein the result is written.

Shift L Shift to left the bits of a Register.

Executes the shift of a Register to left: all of the bits are shifted of N positions to left. The least significant bits
will be forced to 0.

Variables:

Source Internal Register containing the value.
N Number of shift to execute.
Dest Internal Register wherein the result is written.

NOT Executes the inversion of one or more bits of a Register.

Executes the inversion of one or more bit of a Register. After the execution of the logical operation will be
forced only the bits set as 1 in the mask; the bits set as 0 won't be modified.

 Variables:

Source Internal Register containing the value.
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination.

XOr (bit) Executes the logical operation “XOR” (Exclusive Or) between two bits.

Executes the logical operation “XOR” (bit to bit) between a Register and a kostant (mask) or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same (modify the format of the
Register). After the execution of the logical operation only the bits set as 1 in the mask will be forced ; the bits
set as 0 won't be modified. In case of a 32 bit source Register or kostant (long) and a 16 bit Register of
destination (integer), the most significant bits will be ignored.

Variables:

Source A Kostant or Internal Register relative to the first operator.
Mask A Bits of the first operator
Source B Kostant or Internal Register relative to the second operator.
Mask A Bits of the second operator
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination .

4. Functions description

Dev9K

Pag. 16<< INDEX

Add Calculates the sum of two values

Calculates the sum between an Internal Register and a Kostant or between two Internal Registers.

Variables:

Source A Kostant or Internal Register relative to the first operator.
Source B Kostant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

Sub Calculates the difference of two values

Calculates the difference between an Internal Register and a Kostant or between two Internal Registers.

Variables:

Source A Kostant or Internal Register relative to the first operator.
Source B Kostant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

Mult Calculates the multiplication of two values

Calculates the multiplication between an Internal Register and a Kostant or between two Internal Registers.

Variables:

Source A Kostant or Internal Register relative to the first operator.
Source B Kostant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

Rotate L Rotates to left the bits of a Register.

Executes the rotation of a Register to left: all of the bits are shifted of N positions to left. At each shift the least
significant bit receives the value of the most significant bit.

Variables:

Source Internal Register containing the value
N Number of shift to execute.
Dest Internal Register wherein the result is written.

Rotate R Rotates to right the bits of a Register.

Executes the rotation of a Register to right: all of the bits are shifted of N positions to right. At each shift the
most significant bit receives the value of the least significant bit.

Variables:

Source Internal Register containing the value.
N Number of shift to execute.
Dest Internal Register wherein the result is written.

4. Functions description

Dev9K

Pag. 17<< INDEX

SQRT Calculates the Square Root of a value

Calculates the Square Root of a value contained in an Internal Register.

Variables:

Source Internal Register containing the value
Dest Internal Register wherein the result is written.

Average Calculates the Arithmetic mean of N values.

Calculates the Arithmetic mean of N Internal Registers values. (sum of the values / N).

Variables:

Source Address of the Internal Register containing the first value.
N Number of Internal Register of which calculate the mean.
Dest Internal Register wherein the result is written.

Linearization Calculates a value in function of a linearization table.

Calculates the Linearization of a value in function of the linearization table selected. Refer to the section
“Table” for more information.

Variables:

Source Internal Register containing the value to linearize.
Function Name of the Linearization table to be followed.
Dest Internal Register wherein the result is written.

Scale Executes the proportional scaling of a value

Executes the proportional scaling between the input range values and the output range values, referring to the
value of an Internal Register.

Variables:

Source Internal Register containing the value to scale.
Span In Maximum value of the input range
Zero In Minimum value of the input range
Dest Internal Register wherein the result is written.
Span Out Maximum value of the output range
Zero Out Minimum value of the output range

Div Calculates the division between two values.

Calculates the division between an Internal Register and a Kostant or between two Internal Registers.

Variables:

Source A Kostant or Internal Register relative to the first operator.
Source B Kostant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

4. Functions description

Dev9K

Pag. 18<< INDEX

Trip Control of a Trip Alarm

Controls a Trip Alarm with setting of the Trip level, hysteresis and delay time for ON and OFF condition. If the
input value is higher than the high trip level (MAX) for a time longer than Ton, the bits selected in the output
mask will be forced to 1. If the input value is lower than the low trip level (MIN) for a time longer than Toff, the
bits selected in the output mask will be forced to 0.
It is possible to use this Function Block to execute the operation “A>B”: set the trip levels with the same value
and the delay times Ton and Toff = 0.
NOTE: the output status is updated at each execution of the Function after the end of the delay time: it is
suggested to insert this Function Block in a zone of the Program continuously executed.

The graph (Fig.4.1) shows the working of a Trip alarm that goes on if the input signal is higher than 100°C for at
least 2 seconds and goes off if the input signal is lower than 90°C for at least 5 seconds.

Variables:

Input Internal Register containing the value to compare
Max High Trip level
Min Low Trip level
Dest Internal Register wherein the result is written.
Mask Mask applied to the result.
Use Timer Number of Internal Timer to use (0÷15)
Timer On Delay time for Trip Alarm activation (ms)
Timer Off Delay time for Trip Alarm de-activation (ms)

Fig. 4.1

Max

Min

Toff
(5 sec.)

Ton
(2 sec.)

100

90

Output
(dest. bit)

Input

4. Functions description

Dev9K

Pag. 19<< INDEX

Timers Activation of an Internal Timer

Sets an Internal Timer and starts to count. During the count, the bit relative to the Timer selected in the
System Register “Timers Enable”, will be forced to 0. At the end of the count, the bit will be forced to 1.
It is possible to check the status of the bit to determine the end of the time set.

Variables:

Timer Number of the Internal Timer to enable
mSec Timer Preset (milliseconds)

Goto Unconditioned jump to a Function Block.

Executes an unconditioned jump to a Function Block. The Function Block recalled must have a unique Label.
It is possible to select the Label of the Function Block which jump to, sorting out it between those available in
the listbox “Func.Block”. The list is automatically updated each time that the user identifies a new Block; in the
case of the list is empty the value 0 appears.

Variables:

Func.Block Pointer to the Function Block which jump to.

If (bit) Conditioned jump to a Function Block.

Executes a conditioned jump to the Function Block indicated in the variable “Goto if true” if the status of the bit
selected is 1, while if the status of the bit is 0 jumps to the Function Block indicated in the variable “Goto if
false”. All of the Function Blocks called must have a unique Label. It is possible to select the Label of the
Function Block which jump to, sorting out it between those available in the listbox “Goto if true” and “Goto if
false” . The lists are automatically updated each time that the user identifies a new Block; in the case of the list
is empty the value 0 appears.

Variables:

Source Internal Register used as reference
Bit Number of the bit to control (0÷15)
Goto if True Pointer to the Function Block which jump to (if Bit=1)
Goto if False Pointer to the Function Block which jump to (if Bit=0)

Call Recall a Subroutine

Executes a jump to the first Function Block of a Subroutine; at the end of the Subroutine (command “Return”),
the Function Block successive to the block “Call” will be executed. The Function Block recalled must have a
unique Label. It is possible to select the Label of the Function Block which jump to, sorting out it between
those available in the listbox “Func.Block”. The list is automatically updated each time that the user identifies a
new Block; in the case of the list is empty the value 0 appears.
NOTE: for each block “Call” must correspond a block “Return”, otherwise it is possible to occur in a “Stack
Overflow” error (refer to the section Troubleshooting).

Variables:

Func.Block Pointer to the Function Block which jump to

Return Return from a Subroutine

Indicates the end of a Subroutine. The Program will return to the Block following the Function Block “Call”.
NOTE: for each block “Return” must correspond a block “Call”, otherwise it is possible to occur in a “Stack
Overflow” error (refer to the section Troubleshooting).

4. Functions description

Dev9K

Pag. 20<< INDEX

5.1 – INSERTION OF TABLES

5. Insertion of Tables

To insert the linearization tables, it is necessary to open the proper window
selecting “Tools -> Tables” in the Menu bar (Fig.5.1) .
To upload the points of a table from a file, click on the “Load from File”
button (Fig.5.1-A); the parameters relative to the table like the name, the
number of points and the input and output values for each point will be
loaded.
Each table must be associated to a unique name that identifies the table
inside the Program when the user recall it: to modify the name, click on the
text box “Name” (Fig.5.1-B) and write the new name or select one between
those existing.
The number of points (32 max.) defines the steps of linearization applied to
a variable.
To modify it click on the text box “N points” (Fig.5.1-C) and write the new
value: the window will be automatically updated.
Each point is defined by the input and output values. The input values must
be inserted in increasing order, while the output values can be inserted both
in increasing and decreasing order.
The example (Fig.5.1-D) shows how to create an 8 points table to linearize a
RTD temperature sensor and to obtain the conversion Ohm/°C (Fig.5.2) .

Fig. 5.1

A

B

C

D

E F G

When the insertion of points is complete, it is possible to save the table in a
file, clicking on the “Save to File” button (Fig.5.1-E); by this command the
name of the table, the number of points and the input and output values per
each points will be saved.

To insert the table inside the Program, click on the “>>” button (Fig.5.1-F).
The “Table List” will be updated with the name of the table just inserted and
shows the tables available for the Program. To turn back to the Function
Block window, click on the “OK” button.
Select the Internal Register which the linearization curve will be associated
to and click on the “OK” button to turn back to the Main Program window.
When the Function Block is recalled by the Program, the Controller
executes a control between the value contained into the Internal Register
and the points of the selected table and calculates by interpolation the
output value.
In the example (Fig.5.1-D) for an input value of 1789 Ohm, will be calculated
an output of 35 °C.

°C Ohm
0 1000
15 1145.6
20 1367.3
25 1532.7
30 1673.4
40 1904.5
50 1966.3
60 2000

Fig. 5.2

800 1000 1200 1400 1600 1800 2000 2200
0

10

20

30

40

50

60

70

Ohm

°C Ohm / °C characteristic Example of table
provided from the
manufacturer of the
sensor :

Dev9K

Pag. 21<< INDEX

Fig. 6.4

Open the window “Settings” (Fig.6.2) selecting “Settings -> Controller” in the
Menu bar.
Set the following parameters:
Node ID : Modbus node address (1 ÷ 247)
Channel : Communication Interface (Ethernet or serial port)
IP Address : Controller IP address
Port : Modbus/TCP socket reserver port (502 for direct
connection)
Timeout : Receiving Timeout for TCP commands
To confirm, click on the “OK” button.

Click on the “Connect” button (Fig.6.3-A): if the connection ends correctly, the
message “Connected” will be visualized in the Status bar Fig.6.3-B) and in
the Log window (Fig.6.4); in case of error, refer to the section
“Troubleshooting” to solve the problem.
From this moment all of the reading, writing, Programming and debugging
operations will be sent only to the selected Controller.
If the user have to change the Controller, it is necessary to disconnect the
Controller in use, click on the “Disconnect” button (Fig.6.3-C), modify the
parameters in the “Settings” window and then click on the “Connect” button
to communicate with the new Controller.

A

Fig. 6.3
B

C

Fig. 6.2

6. Controller operations

6.2 – CONNECTING TO THE CONTROLLER

6.1 – SEARCHING OF THE DEVICES CONNECTED
Connect the Controller to the Ethernet network and power-on it (refer to the
data-sheet).
Open the window “Search” (Fig.6.1) selecting “Tools -> Search” in the Menu
bar. In this window it is possible to select the type of Controller to search
(Fig.6.1-A) and to set the receiving Timeout (time over which the device is
intended as not connected)- Fig.6.1-B. To search eventual devices
connected to the serial Modbus-master port of the Controller (Sub-Nodes),
the user must indicate the range of addresses to control (Fig.6.1-C); to use
this function it is necessary that the Controller is set in “Debug” modality
and in “Stop” condition.
When the options have been selected, click on the “Search” button (Fig.6.1-
D) to start the search. If necessary it is possible to interrupt the search
clicking on the “Stop” button.
When a Controller compatible with the type selected is recognized, it is
visualized in the Ethernet list (Fig.6.1-E), wherein it is possible to read the IP
address , the MAC address and the Modbus node of the device.
Afterwards, if required, the Modbus slave devices connected to the
Controller will be searched. The recognized devices will be visualized in the
Subnet list (Fig.6.1-F), wherein it will be possible to read the Modbus slave
node address and, in case of the DAT3000 series devices, the Firmware
code. At the end of the search, it is possible to select one of the Controllers
detected clicking on its name and set it as default Controller, clicking on the
name by the right button of the mouse and selecting the “Set as Controller”
option; after this operation,the connection to the Controller will be
automatically executed. Refer to the next paragraph to set the Controller
manually.

Fig. 6.1

A

B
C

D

E

F

Fig. 6.5

A

When the Program is complete and if the compiling ends correctly it is
possible to download it in the RAM memory of Controller. To do it, open the
“Download” window (Fig.6.6). clicking on the “Download” button (Fig.6.5-A).
The Download operations are allowed only in “Debug” modality (refer to the
section “Debug Modality”).
Inside the “Download” window it is possible to set one or more options:
● “Download Program” (Fig.6.6-A) – Starts to download the Program in the
RAM memory of Controller.
● “Verify” (Fig.6.6-B) – Compares the Program contained in the RAM memory
with the compiled Program.
● “Save in Flash” (Fig.6.6-C) – Transfers the Program loaded in the RAM
memory to the Internal Flash Memory of the Controller.
● “Clear Register Memory” (Fig.6.6-D) – Resets the value of the Controller's
General Purpose Internal Registers .
● “Run After Download” (Fig.6.6-E) – At the end of the download, sets the
Controller in “Run” modality (execution of the Program). Fig. 6.6

A

B

C

D

E

6.3 – DOWNLOAD THE PROGRAM

Dev9K

Pag. 22<< INDEX

By this modality it is possible to follow the Program flow and to monitor in
real time the Controller's status and the value of the Internal Registers.
When the Program is interrupted the Register Table is updated to the last
reading.
During the development of the Program, if the Controller is connected, click
on the “Debug” button (Fig.6.7-A) to activate the “Debug” modality.
In the Status bar the message “Debug Mode” (Fig.6.7-B) will be visualized
and in the Tool bar will be activated the commands to execute the following
debug operations:
● “Run” (Fig.6.7-C) – Executes the Program continuously.
● “Run To Break” (Fig.6.7-D) – Executes the Program up to the Break point .
● “Pause” (Fig.6.7-E) – Interrupts the execution of the Program (“Run”
condition) / executes the Program step by step (“Stop” condition)
● “Animate” (Fig.6.7-F) – Simulates the evolution of the Program flow
executing it step by step.
● “Stop” (Fig.6.7-G) – Blocks the Program and reset it to the first Function
Block.

The Function Block in execution is identified by the Index parameter
coloured in red and is updated the PC (”Program Counter”) value (Fig.6.8-A).
Open the “Settings” window (Fig.6.9), selecting “Settings -> Debug” to set
the following options for the Debug modality:
● “Run-Time Register Update” (Fig.6.9-A) – If active, in “Run” condition the
table Register will be automatically updated (1 read per second)
● “Animate Time” (Fig.6.9-B) – Setting of the playing time between one step
and the successie in the “Animate” condition.

Fig. 6.7

A C D E F G

B

Fig. 6.8

A

Fig. 6.9

A

B

After the phases of development and Debug it is possible to proceed with
the “Release” modality, clicking on the “Release” button (Fig.6.10-A).
In the Status bar the message “Release Mode” (Fig.6.10 -B) will be visualized
and in the Tool bar the commands relative to the operations of Debug and
Download will be disabled.
In the “Release” Modality, at the power-on, the Controller will be
automatically set in “Run” condition, loading in the RAM memory the
Program saved in the Internal Flash memory.
In this modality it is possible to read and write the Internal Registers.

Fig. 6.10B

A

IMPORTANT:
In “Debug” modality, at the power-on the Controller will be

automatically set in “Stop” condition without load and execute the
Program. For such reason, at the end of the Debug operations, set the
Controller in “Release” modality.

In “INIT” modality is not possible to execute the Program (Run)
and the Debug functions are disabled but it is allowed to download the
Program, to read and write the Internal Registers and the Gateway
function is enabled.

6.4 – DEBUG MODALITY

6.5 – RELEASE MODALITY

6.6 – INIT MODALITY

The “INIT” modality can be used in case of fortuitous loss of configuration
to set the Controller in the default condition in order to recover the desired
configuration. In this modality the value of the following parameters of the
controller will be automatically set independently of the configuration saved
in Eprom.
● IP Address Value assigned automatically from the network by

a DHCP server
● Modbus Node 0x0Ah (10)
● PORT 0 (Slave) Baud-rate = 9600 bps

In this modality is not possible to execute the Program (Run) and the
Debug functions are disabled but it is allowed to download the Program, to
read and write the Internal Registers and the Gateway function is enabled.

6. Controller operations

Dev9K

Pag. 23<< INDEX

6.7 – WEB SERVER

By Web Browser it is possible to get the access to the Controller's Web
Server in order to visualize the Web pages containing the data about the
Ethernet configuration and the value of the Internal Registers.

To connect to the Web pages, it is necessary to write in the Address bar of
the Browser in use the IP address of the controller which access to.
The following example shows how to connect to the Web page Index of a
Controller with IP address = 192.168.1.172

Address bar text:
http://192.168.1.172/index.htm

From the web page Index (Fig.6.11) it is possible to get the access to the
following pages:

● Configuration (Fig.6.12) (http://192.168.1.172/protect/config.htm):
allows to modify the TCP settings (IP address , Subnet mask, Gateway,
etc...). Clicking on the “Save Config” button, the parameters set will be
saved in Eprom and the Controller will be resetted.
It is possible to protected this page by Password, modifying the fields
“User” and “Password” and click on the “Save Config” button.
WARNING!!in case of lost Password, the user won't be able to get back
the information.

● Dynamic Var (Fig.6.13) (http://192.168.1.172/dynvar.htm):
In this page are visualized the values of the Internal Registers from the
%R26 up to the %R41. To update the value of the Registers it is
necessary to use the F5 key.

Fig. 6.11

Fig. 6.12

Fig. 6.13

6. Controller operations

Dev9K

Pag. 24<< INDEX

7.1 – ETHERNET CONNECTION

On the Ethernet side, the Controller works like a Server, therefore for the
connection to the LAN network it is necessary to follow the standards for
the Ethernet connections. Hereafter are reported some practical tips to
connect the Controller .

To connect the Controller directly to a PC, use a crossover cable.
To connect the Controller to an Hub, Switch or Router, use a direct cable.

Due to their settings, it could happen that some Firewalls won't allow the
communication with the Controller; this kind of problem could happen
particularly in phase of Search: in case of communication problems it is
suggested, if it possible, to disable eventual active Firewalls on the Client
PC or Router.

If the DHCP service (Dynamic Host Communication Protocol) is not in
use, be sure that the IP, the Subnet Mask and the Gateway address of the
Controller will be compatible with the settings of the LAN network which the
Controller is connected to.

7. Tips and suggestions

Dev9K

Pag. 25<< INDEX

8.1 –ERROR MESSAGES IN THE LOG WINDOW AND IN THE STATUS BAR

8. Error messages

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

“Not Connected”. -The Controller is not connected.
-The communication channel selected
 has not been enabled.

-Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

 “Com Error”. -Wrong setting of the Ethernet port's
 communication parameters.
-Wrong setting of the Slave port's
 communication parameters.
-Wrong command addressing on the
 Master port.

 -Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

-Verify in the “Config” menù :
 -Modbus node ID of the device.
 -Baud rate.
- Delay of receiving (Slave port)

If the parameters have been correctly set
check the connection of the device

 “Com Timeout”. -With communication channel configured,
indicates a missing reception of the
response by the device.
-Wrong communication parameters.

 -Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

“Label error”. -One or more errors occur inside a
Function Block when the Program is
compiled,downloaded or verified.

-Check the parameters of the Function
Block identified by the index number
visualized inside the log window. (refer to
the sections 2.3 and 4.2).

Dev9K

Pag. 26<< INDEX

8.2 – ERROR MESSAGES INSIDE THE POP-UP WINDOWS

“Controller not connected”.

“Timeout”. -The response provided by the Controller
 is not correct and the communication has
 been interrupted.

“Wrong response (function)”. - The Modbus slave device asked by the
 Controller doesn't provide a correct
 response.

-Verify in the “Config” menù :
 -Modbus node ID of the device.
 -Baud rate set for the Slave device.
- Delay of receiving (Slave port)
- Stop bit, Parity type.
- Number of the registers read or written.
 -Modbus function code transmitted.
- Delay of receiving (Master port)

“Check values”. - One or more parameters of a Function
 Block are not correct; this error occur
 when the user clicks on the “OK” at the
 moment to insert the Function Block in
 the Program.

-Check the parameters of the Function
 Block: for the functions of external
 reading and writing, refer to the User
 Guide of the Slave device in use.

8. Error messages

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

-The Controller is not connected.
-The communication channel selected
 has not been enabled.

-Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

 -Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

-Verify in the “Config” menù :
 -Modbus node ID of the device.
 -Baud rate.
- Delay of receiving (Slave port)

If the parameters have been correctly set
check the connection of the device

Dev9K

Pag. 27<< INDEX

9.Troubleshooting

9.1 – POSSIBLE CAUSES OF FAULT

Is not possible to power-on the
Controller.

-The Controller is not correctly powered.
-The value of the power supply value is
 lower than the specifications limits.

-Refer to the data-sheet of the Controller
 in use and verify the relative Technical
 Specifications.

There is not communication between
the Host PC and the Controller.

-Ethernet port not correctly connected.
-Modbus Slave port not correctly
 connected.
-Eventual interface between PC and
 Controller not correctly connected.
-Wrong communication parameters.

-Refer to the section 7.1
-Refer to the data-sheets of the Controller
 and the Interface device in use.
-Refer to the section 8.1 .

There is not communication between
the Controller and one or more
Modbus slave devices.

-Modbus Master port not correctly
 connected.
-The slave device is not correctly powered.
-The slave device is not correctly
 connected on the RS-485 serial line.
-Wrong communication parameters.
-The Modbus addresses of the slave
 devices connected are not included in the
 range set in the System Register %S17
 (Gateway Mask) .

-Refer to the section 8.1
-Refer to the data-sheets of the Controller
 and the Slave devices in use.
-Slave device in INIT condition and Baud-
 rate of communication different of 9600
 bps.
-Verify the values of Gateway Mask.

The Program is not correctly executed
or it is impossible to execute the
Program.

-Wrong communication parameters.
-The Controller is in “Debug” modality and
 in Halt, Stop or Break Point condition.
-Wrong data-format of the Registers.
-Wrong parameters of the Function Block.
-Controller in Stack Overflow condition.
-Parameters of the eventual Slave
 devices connected not correctly inserted.
-The Program has not been downloaded
-Controller in INIT modality.

-Refer to the section 8.1
-Set the Controller in “Debug” modality
 and in “Run” condition or in “Release”
 modality.
-Remove eventual Break Points.
-Set the correct data-format of Registers.
-Verify the parameters of Function Block
 (data-format, masks, tables, etc..).
-Control, in the Program, the correspon-
 dence between Call and Return.
-Control the configuration of the Slave
 devices (type of input and output, etc..)
-Download the Program.
-Control if the INIT modality is active.

The configuration of the Controller is
unknown.

- -Set the Controllore in “INIT” modality; the
 parameters of configuration of the
 Controller will be forced to the default
 values listed in section 6.6 .

The Controller is connected in “INIT”
modality but is not executed (where
foresee the LED “STS” doesn't blink)
or there is not communication between
the Host PC and the Controller.

-Controller not correctly connected.
-Wrong port Baud Rate.

-Connect the terminal INIT to GND.
-Switch-off and than power-on the
 Controller after the connection of the
 terminal INIT to GND.
-Set the Baud-rate of the Slave Port as
 9600 bps.

The functions Clock and Calendar
(where foresee) don't work correctly.

-Battery low or absent.
-Clock and Calendar parameters not
 correctly set in the proper Registers.

-Change or insert the battery.
-Control the parameters of the System
 Registers (refer to the sections 3.3
 and 3.4).

The function “Search” doesn't find
any Controller.

-There are not Controllers connected.
-Controllers not correctly connected.
-The Controllers connected by Ethernet
 port has been set with communication
 parameters not compatible with the
 Ethernet interface of the Host PC in use.
-On the network are active Firewall or
 Routers that block the access to the
 Controller.

-Refer to the data-sheet of the Controller
 in use and verify the relative Technical
 Specifications.
-Verify the parameters of the Ethernet
 interface of the Host PC.
-Call the System Administrator in order to
 connect the controller to the network.

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

Dev9K

Pag. 28<< INDEX

9.Troubleshooting

The function “Search” doesn't find any
Slave device.

-There are not slave devices connected .
-The slave devices are not correctly
 connected.
-The Controller which the slave devices
 are connected to has not been selected.
-The Modbus addresses of the slave
 devices connected are not included in the
 range set in the System Register %S17
 (Gateway Mask) or in the range set in the
 menu “Search”.
- The baud-rate of the Slave devices
 connected is not the same of that set for
 the Master port of the Controller.
- The Timeout values are not correct.

-Refer to the data-sheets of the slave
 devices in use and verify the relative
 Technical Specifications.
-Verify that the Controller selected is the
 same which the slave devices are
 connected to.
- Verify the correspondence between
 settings and Modbus addresses of the
 slave devices.
-Verify the values of Gateway Mask.
-Control the baud-rate and delay time of
 the slave devices connected.

The data saved as Kostant in the
Register table, are not saved when the
Controller is switched off.

-The data have been saved in General
 Purpose Registers instead Retentive
 Registers .

-Save the kostant values in Retentive
 Registers.

The Web Pages haven't been loaded. -The IP address written in the address bar
 of the Internet browser is not the same of
 Controller's IP address.
-The Controllers connected by Ethernet
 port has been set with communication
 parameters not compatible with the
 Ethernet interface of the Host PC in use.
-On the network are active Firewall or
 Routers that block the access to the
 Controller.

-Verify the IP address written in the
 address bar.
-Verify the parameters of the Ethernet
 interface of the Host PC.
-Call the System Administrator in order to
 connect the controller to the network.

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

 Datexel s.r.l. reserves its rights to modify its products totally or in part without notice at any time.

Pag. 29

ED.03.10 - R00

<< INDEX

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29

