for use with continuous level transmitters

35 mm DIN rail controller

Application

Level Control

High and low level switch prevents tank overspills and product shortage or protects pumps and immersion heaters.

Automatic fill or empty operation maintains product level between two set points.

Automatic fill or empty with alarm operation maintains product level between two set points with an independent high or low switch.

Outputs

The 12 amp, SPDT relays provide direct control of pumps or valves.

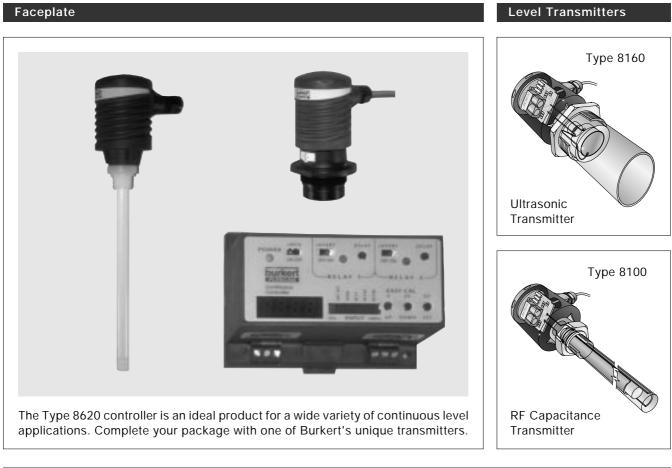
The 4-20 mA repeater provides an isolated signal with external control devices.

Advantages / Benefits

- Spanable controller with up to three set points, two relay outputs and isolated 4-20 mA repeater
- ► Easy-Cal[™], push button calibration for offset, span and relay set points
- Four segment LED digital display indicates 4-20 mA reading or user selected engineering units
- LED bar graph indicates 4-20 mA reading as a percentage of span with relay set points
- LED indicators for power and relay output status
- Adjustable relay time delay from 0-60 seconds
- Invert switch for selectable NO / NC operation
- Security access lock out

Interface

Level

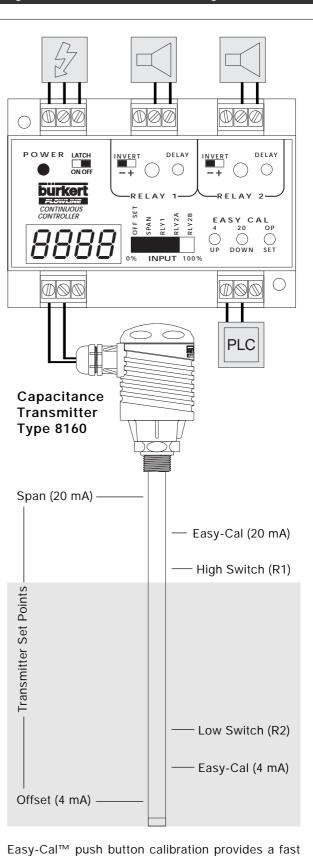

Type 8160 ultrasonic level transmitter

Type 8100 capacitance level transmitter

Continuous Rail Mount Controller

Туре 8620

Guide to Controls


POWER AC AC GND 120 VAC, 50 - 60 Hz 240 VAC, 50 - 60 Hz	OUTPUT	OUTPUT O NO 240 VAC 120 VDC
3	4	4
POWER LATCH 1 ONOFF DURKert	off on 5 2 6	INVERT DELAY OFF ON O S 2 6
Town-Town-Town-Town-Town-Town-Town-Town-	RELAY 1 RELAY 1 OFF SPAN RIV2B RI	$\begin{array}{c c} \hline RELAY 2 \\ \hline EASY CAL \\ 4 & 20 & OP \\ \hline O & O & O \\ UP & DOWN & SET \\ \hline UP & DOWN & SET \\ \hline \end{array}$
		* (13) (12) (11)
8		14
INPUT (+) (-) (+) 24 VDC GND 14 VDC 5 Watt 4-20 mA		REPEATER (+) (-) GND 4-20 mA 12-36 VDC

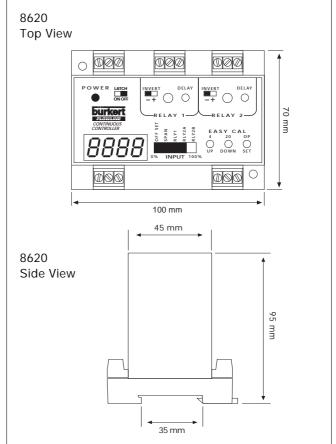
- The power indicator will light when 240/120 VAC power is turned on.
- ② The relay indicator will light when the 12 amp relay is energized.
- ③ The 240/120 VAC power is connected to these terminals.
- ④ The NO / NC controlled device is connected to these terminals.
- (5) The invert reverses the NO / NC relay logic.
- (6) The delay sets a 0-60 second period before the relay will respond.
- ⑦ The display indicates the 4-20 mA reading or user engineering units.

- (8) The 2/3-wire transmitter input is connected to these terminals.
- (9) The latch determines whether R2 will respond to one or two set points.
- The bar graph indicates the 4-20 mA reading as a function of span.
- The OP/SET is used to scroll between set points.
- (2) The 20/DOWN is used to place the 20 mA set point or decrease values.
- (3) The 4/UP is used to place the 4 mA set point or increase values.
- The 4-20 mA repeater output requires external 12-36 VDC power.

Continuous Rail Mount Controller

Automatic Fill / Empty with Alarm Configuration High and Low Level Switch Configuration DC I \bigcirc \bigcirc NVERI DELAY POWER DELAY POWER LATCH NVER (- + burkert CONTINUOUS CONTROLLER RLY2A RLY2B CAL UP DOWN SET **INPUT** 100% 0% \bigcirc $O \otimes O$ ØS I PLC Ultrasonic Transmitter Type 8160 Span (20 mA) Easy-Cal (20 mA) Transmitter Set Points High Alarm (R1) Transmitter Set Points Valve Closed (R2) Valve Open (R2) Easy-Cal (4 mA) Offset (4 mA) Easy-Cal[™] push button calibration provides a fast and simple method to readjust the Echotouch™ measurement span and apply the relay set points.

and simple method to readjust the Symprobe™ measurement span and apply the relay set points.


Continuous Rail Mount Controller

Technical Data

Туре 8620

Technical Data		Dimens
Voltage input: Current consumption: Sensor supply voltage:	240 / 120 VAC at 50-60 Hz. 0.25 amps 24 VDC, 5 Watt maximum	8620 Top Viev
Signal input: Offset adjustment: Span adjustment: Controller set points:	4-20 mA, 14 VDC Easy-Cal [™] push button (4 mA) Easy-Cal [™] push button (20 mA) 1 point: High or low alarm 2 point: High and low alarm 3 point: Fill / empty with alarm	
Indication: Numerical display: Bar graph display: Alarm indication:	LED for power and relay status 4 segment digital display 4-20 mA span / set points Amber LED: Below 4 mA Red LED: Above 20 mA	
Relay output: Switch voltage: Relay invert: Relay latch: Relay time delay: Contact resistance: Repeater output: Power fail safe:	Two, 12 amp SPDT 240 VAC / 120 VDC (resistive) Selectable, NO or NC Selectable, ON or OFF 0.15 - 60 seconds 30 milliohms (max current/volt) Isolated, 4-20 mA, 12-36 VDC Form C relays	8620 Side Vie
Temperature rating: Enclosure rating: Enclosure material: Enclosure dimensions: Enclosure mounting:	-20 to 70 °C. IP 40 PP, flame retardent (U.L. 94VO) 100 mm x 95 mm x 70 mm 35 mm DIN rail (at wall)	

Dimensions

Ordering Chart for Rail Mount Controller

Description	Order-No.
Rail Mount Controller Type 8620,	417 398 T
Standard 240/120 VAC	