

Temperature controller for hot runners 1/16 DIN - 48 x 48 mm gammadue® series M2 line

Born for the hot runners

This controller has been designed to meet the special requirements of the plastic industry and more specifically of the hot runners applications. Selective set point modification from digital input within a bank of controllers, freezing of the controller output to the most suitable value in case of emergency conditions, momentary target set point visualisation during machine start-up and front keys lock are the typical functions required by hot runners machines.

ASCON spa

20021 Bollate - (Milano) Italy - Via Falzarego, 9/11 - Tel. +39 02 333 371 - Fax +39 02 350 4243 http://www.ascon.it e-mail info@ascon.it

$\underset{\text{the right solution to your needs}}{gamma} \boldsymbol{due}^{\text{\tiny \$}}$

Your needs	Our solutions
Simultaneous set point modification on several controllers	Set point modification from digital input with optional accessory
Control availability during emergency	Average safety output
Easy replacement and quick start-up	Configuration by simple to use codes
Process with time variable characteristic	Two initial and one continuous calculations of the right control parameters
Alarm signalling	Absolute, band and deviation alarms, Latching/Blocking
Interfacing with other devices	Serial communications at 9600 baud Modbus/Jbus protocol, analogue retransmission output
Quick learning	Every model has the same operating method
Ergonomic compatibility with other devices	Two colours: beige or darkgrey front panels
Environmental protection	IP65 front panel protection (indoor, dust and water protection)
Easy to use	Ergonomic keypad, clear and comprehensive display
Noise immunity	Electromagnetic compatibility
Universal input signals, linear as well as non-linear	Configurable input (TC, RTD, mA, Volt and ΔT , infrared sensor, "custom" linearisation)
Cost reduction	Built-in Timer and Start-up functions
Reliability and safety	CE compatibility, ASCON is ISO 9001 certified, 3 years warranty
Technical support	Technical application assistance from ASCON sales and after sales service

Control Alarms Main universal input Single action PV OP1 0P1 OP2 OP3 Single action Auxiliary input (option) 0P2 OP1 OP3 (option) **AUX** OP2 **Double** OP1 OP3 OP2 action Digital input (option) **Double OP1 OP2** OP3 IL OP3 action **Double** OP2 OP3 OP1 action M2

Setpoint

Special functions

Resources

(option)

Fuzzy tuning with automatic selection

One shot Auto tuning

One shot Natural Frequency

Operating mode

Adaptive

Continuous tuning

Technical data

Features at env. 25°C	Description							
Total	From keynag	tha us	ar salaa	ts: type of	innut - oner	ating mode		
configurability	From keypad the user selects: type of input - operating mode - type of control algorithm - type of output and safe conditions							
comigarability	- alarm types and functionallity						13	
	Common characterist		A/D converter with 50.000 points Update measurement time: 0.2 sec Sampling time: 0.5 sec Input shift: -60+ 60 digits Input filter: 130 sec (OFF= 0)					
	Accuracy		0.23% ± 1 digit (m		·		Between 100 and 240V~ error is minimal	
PV input (for signal ranges see table 1)	Resistance thermometer (for ΔT : R1+R2 must be <320 Ω)		Pt100Ω at 0°C			Line: 20Ω max (3 wire)		
			(IEC 75°C /°F selecta	1)	2 or 3 wire Connection The 0.1°		Thermal drift $0.1^{\circ}\text{C}/10^{\circ}\text{C}$ env. T. $<0.1^{\circ}\text{C}/10\Omega$ line resist.	
	Thermocoup	ole	L,J,T,K, (IEC 58- °C /°F selecta	S 4)	Internal co junction compensal		Line: 150Ω max Thermal drift <2μV/°C env. T. <0.5μV/10Ω line resist.	
	DO: 1			nA with	Engineerin	Engineering units,		
	(current)	DC input (current)		kt. Shunt VIΩ	floating decimal point, Low Range -9999999		Input drift: <0.1% / 20°C env. T.	
	DC input		0/10!		High Range		CU. 170 / 20 C CIIV. 1.	
	(voltage)		Rj >10N	/ΙΩ	100 digits m			
A '!!'	CT current		50 or 10		Current vis		0200 A	
Auxiliary input	transformer		selecta	ardware	with 1A resolution and Heater break alar		m	
	The election	of the o		ibie	una ricato	bi can alai		
Digital input (option)	The closure of the external contact produces any of the following actions: Auto/Man mode char Setpoint activation, k							
Operating modes			loop or	ON/OFF w	ith 1 or 2 ala	arms		
	Algorithm				noot control			
	Proport. band (P) 0.5999.9%							
	Integral time			0.0 min				
	Derivative ti	me (D)		10.00 min	OFF = 0		P.I.D. algorithm	
	Error band		0.10.					
Control mode	Cycle time Dead band		1200					
	Relative coo	l nain	0.110			For Heat/Cool		
	Cool cycle ti		1200				Tol fical/coofficac	
	Overshoot control 0.01							
	High limit 100.010.0% (heat) -100.010.0% (co				DLD almow!#			
Hysteresis			100.0	.10.0% (hea	at) -100.01	0.0% (cool)	P.I.D. algorithm	
	Hysteresis		0.110		at) -100.01	0.0% (cool)	P.I.D. algorithm ON/OFF algorithm	
OP1 output	Hysteresis SPST relay	N.O., 2 <i>P</i>	0.110	0.0%		0.0% (cool)		
OP1 output OP2 output	SPST relay Logic not iso	olated: 5	0.110 V250V~ V-, ± 109	0.0% for resisti %, 30 mA r	ive load max			
·	SPST relay Logic not iso SPST relay (olated: 5 option)	0.110 N/250V~ N/-, ± 109 N.O., 2A	0.0% for resisti %, 30 mA r /250V~ fc	ive load max or resistive l			
OP2 output	SPST relay Logic not iso SPST relay (SPST Relay	olated: 5 option) N.O., 2	0.110 A/250V~ 6V-, ± 109 N.O., 2A A/250V~	for resisti %, 30 mA r /250V~ fo for resist	ive load max or resistive l			
OP2 output	SPST relay Logic not iso SPST relay (olated: 5 option) N.O., 2 1.1 10.	0.110 A/250V~ 6V-, ± 109 N.O., 2A A/250V~ 0% of ra	for resisti %, 30 mA r /250V~ for for resist	ive load max or resistive lo	oad	ON/OFF algorithm	
OP2 output	SPST relay Logic not iso SPST relay (SPST Relay	olated: 5 option) N.O., 2 1.1 10. Active	0.110 A/250V~ V-, ± 109 N.O., 2A A/250V~ 0% of ra high	for resisti %, 30 mA r /250V~ for for resist nge Action	ive load max or resistive lo	oad n threshold	ON/OFF algorithm ± range	
OP2 output OP3 output	SPST relay Logic not iso SPST relay (SPST Relay	olated: 5 option) N.O., 2 1.1 10.	0.110 A/250V~ V-, ± 109 N.O., 2A A/250V~ 0% of ra high	for resisti %, 30 mA r /250V~ for for resist	ive load max or resistive load ive load Deviatio Band thr	oad n threshold eshold	ON/OFF algorithm	
OP2 output OP3 output AL2-AL3	SPST relay Logic not isc SPST relay (SPST Relay Hysteresis 0	olated: 5 option) N.O., 2 1.1 10. Active	0.110 \(\lambda\)250V\(\simeq\) 109 \(\text{N.O., 2A}\) \(\text{A}\)/250V\(\simeq\) 0% of rahigh	for resisti %, 30 mA r /250V~ for for resisti nge Action type Sensor b	ive load max or resistive lo ive load Deviatio Band thr Absolute reak, Heater	oad n threshold reshold e threshold,	± range 0range whole range	
OP2 output OP3 output AL2-AL3	SPST relay Logic not isc SPST relay (SPST Relay Hysteresis 0	olated: 5 (option) N.O., 2 1.1 10. Active Active Special	0.110 \(\lambda\)250V \(\sigma\) \(\sigma\).0., 2A \(\lambda\).0% of ra \(\lambda\)	for resisti %, 30 mA r /250V~ for for resisti nge Action type Sensor b Latching/	ive load max or resistive lo ive load Deviatio Band thr Absolute	oad n threshold reshold e threshold,	± range 0range whole range	
OP2 output OP3 output AL2-AL3 alarms	SPST relay Logic not isc SPST relay SPST Relay Hysteresis 0 Action Local and st Up and dow	N.O., 20 Active Active Special and-by,	0.110 \(\lambda\)/250V \(\sigma\) \(\sigma\)/250V \(\sigma\) \(\sigma\)/250V \(\sigma\) \(\sigma\)/30 of ra \(\sigma\)/30 high \(\sigma\)/30 function	for resisti %, 30 mA r /250V~ for for resisti nge Action type Sensor b Latching/	ive load max or resistive lo ive load Deviatio Band thr Absolute reak, Heater	n threshold eshold e threshold, r break, Loc 0.1999.9	± range 0range whole range op break digit/min (OFF = 0)	
OP2 output OP3 output AL2-AL3	SPST relay Logic not isc SPST relay (SPST Relay Hysteresis 0 Action Local and st Up and dow Low limit	N.O., 20 Active Active Special and-by,	0.110 \(\lambda\)/250V \(\sigma\) \(\sigma\)/250V \(\sigma\) \(\sigma\)/250V \(\sigma\) \(\sigma\)/30 of ra \(\sigma\)/30 high \(\sigma\)/30 function	for resisti %, 30 mA r /250V~ for for resisti nge Action type Sensor b Latching/	ive load max or resistive lo ive load Deviatio Band thr Absolute reak, Heater	n threshold eshold e threshold, r break, Loc 0.1999.9 from low r	± range 0range whole range op break digit/min (OFF = 0) ange to high limit	
OP2 output OP3 output AL2-AL3 alarms	SPST relay Logic not isc SPST relay (SPST Relay Hysteresis 0 Action Local and st Up and dow Low limit High limit	olated: 5 option) N.O., 2 1.1 10. Active Active Special i and-by, n ramps	0.110 \(\lambda\)/250V \(\simes\) \(\cdot\) \(\cdot\	for resisti %, 30 mA r /250V~ for for resist nge Action type Sensor b Latching	ive load max or resistive load Deviatio Band thr Absolute reak, Heater	oad n threshold eshold threshold, r break, Loc 0.1999.9 from low r	± range 0range whole range op break digit/min (OFF = 0) ange to high limit imit to high range	
OP2 output OP3 output AL2-AL3 alarms	SPST relay Logic not iso SPST relay (SPST Relay Hysteresis 0 Action Local and st Up and dow Low limit High limit Fuzzy-Tuning	olated: 5 option) N.O., 2d 1.1 10. Active Active Special and-by, n ramps	0.110 V250V~ V-, ± 109 N.O., 2A A/250V~ 0% of ra high low function digital in s	for resisti %, 30 mA r /250V ~ for for resist nge Action type Sensor b Latching nput	ive load max or resistive load Deviatio Band thr Absolute reak, Heater /Blocking	oad n threshold eshold threshold, r break, Loc 0.1999.9 from low r from low I Step respo	± range 0range whole range op break digit/min (OFF = 0) ange to high limit imit to high range onse	
OP2 output OP3 output AL2-AL3 alarms	SPST relay Logic not iso SPST relay (SPST Relay Hysteresis 0 Action Local and st Up and dow Low limit High limit Fuzzy-Tuning the best meth	olated: 5 (option) N.O., 2 (d.1 10.) Active Active Special (d.1 and-by), in ramps the contood according to the conto	0.110 A/250V ~ EV-, ± 109 N.O., 2A A/250V ~ 0% of ra high low function digital in s troller se ording to the	for resisti %, 30 mA r /250V ~ fc for resist nge Action type Sensor b Latching nput	ive load max or resistive load Deviatio Band thr Absolute reak, Heater /Blocking matically s conditions	oad n threshold eshold threshold, r break, Loc 0.1999.9 from low r from low I Step respo	± range 0range whole range pp break digit/min (OFF = 0) ange to high limit imit to high range pnse equency	
OP2 output OP3 output AL2-AL3 alarms Setpoint	SPST relay Logic not isc SPST relay (SPST Relay Hysteresis 0 Action Local and st Up and dow Low limit High limit Fuzzy-Tuning the best meth Adaptive-Tu	olated: 5 option) N.O., 2 option N.O., 2 option Active Active Special option Active Active Special option Active Active Active Active Active Active	0.110 A/250V ~ BV-, ± 109 N.O., 2A A/250V ~ 0% of ra high low function digital in s troller se rding to the selection of the se	for resisti %, 30 mA r /250V ~ for for resist nge Action type Sensor b Latching nput	ive load max or resistive load Deviatio Band thr Absolute reak, Heater //Blocking matically s conditions rusive, analy	oad n threshold eshold threshold, r break, Loc 0.1999.9 from low r from low I Step respo	± range 0range whole range op break digit/min (OFF = 0) ange to high limit imit to high range onse equency rocess response to	
OP2 output OP3 output AL2-AL3 alarms Setpoint	SPST relay Logic not iso SPST relay (SPST Relay Hysteresis 0 Action Local and st Up and dow Low limit High limit Fuzzy-Tuning the best meth	olated: 5 option) N.O., 2 option N.O., 2 option Active Active Special option Active Active Special option Active Active Active Special option Active Active Active Active	0.110 A/250V~ BV-, ± 109 N.O., 2A A/250V~ 0% of ra high low function digital in s troller se ording to t lf-learnir ontinuou	for resisti %, 30 mA r /250V ~ for for resist nge Action type Sensor b Latching nput lects auto ihe proces: ng, not inti usly calcu	ive load max or resistive load ive load Deviatio Band thr Absolute reak, Heater /Blocking matically s conditions rusive, analy lation of the	n threshold reshold e threshold, r break, Loc 0.1999.9 from low r from low l Step respo Natural fro sis of the p PID param	± range 0range whole range op break digit/min (OFF = 0) ange to high limit imit to high range onse equency rrocess response to eters	

Input type	Scale range
	-99.9300.0 °C
RTD	-99.9572.0 °F
Pt100Ω a 0°C	-200600 °C
	-3281112 °F
T/C type L	0600 °C
Fe-Const.	321112 °F
T/C type J	0600 °C
Fe-Cu 45% Ni	321112 °F
T/C type T	-200400 °C
Cu - CuNi	-328752 °F
T/C type K	01200 °C
Cromel Alumel	322192 °F
T/C type S	01600 °C
Pt10%Rh-Pt	322912 °F
0/420 mA	Configurable engineering units
0/1050 mV	mA, mV, V, bar, psi, Rh, ph
mV Custom scale	On request

Table 1: PV input

Special functions

- Set point modification from digital input

With only one digital input on the controller and by means of the APG2-DRSPC accessory (on request) it is possible:

- to increase by step the set point
- to decrease by step the set point
- to switch the set point from local to stand-by and viceversa.

The value of the step is a parameter equal for both set point increase and decrease. Setpoint modification function can be easily turned off from the keypad. The outputs of the APG2-DRSPC accessory are isolated and can be used to drive up to 48 controllers.

- Average safety output (option)

In case of sensor break the controller output is automatically locked at a value equal to the average of the outputs of the last 50 seconds of operation.

Technical data

Features at env. 25°C	Description	
Operational safety	Measure input	Detection of out of range, short circuit or sensor break with automatic activation of the safety strategies and alerts on display
	Control output	Safety value: 0 100% (-100100% for heat cool) or average safety output (option)
	Parameters	A non volatile memory stores for unlimited time all the parameter and configuration values
	Password	Password to access the configuration and parameters data
General characteristics	Power supply	100-240V~ (-15% +10%) 50/60Hz or 24V~(-25% +12%), 50/60Hz and 24V– (-15% +25%). Power consumption 3 VA max
	Safety	Compliance EN61010-1 (IEC 1010-1), installation class 2 (2500V), pollution class 2, class II instrument
	Electromagnetic compatibility	Compliance to the CE standards for industrial system and equipment
	Protection EN60529 (IEC 529)	IP65 front panel
	Overall dimensions	¹ / ₁₆ DIN - 48 x 48, depth 120 mm, weight 130g appr. Panel cut-out: 45 ^{+0.6} x 45 ^{+0.6} mm

